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ABSTRACT 
Neuro-fuzzy inference systems have been used in many areas in civil engineering applications. 
A stability assessment model for epimetamorphic rock slopes has been developed by using 
Adaptive Neuro-Fuzzy Inference System (ANFIS) for its capacity of dynamic nonlinear 
analyses. In the present study the inference system is employed to predict the stability of the 
slope by choosing bulk density γ, the height H, the inclination β, the shear strength parameters c 
and ϕ, of the slope as inputs, while the stability state as output. 53 slope cases in the author’s 
research projects, i.e. 53 input-output data pairs were extracted, of which 41 pairs (training data 
set) were used for training the ANFIS while the remaining 12 pairs (checking data set) were 
used for validating the identified model. It is observed that the checking results of ANFIS 
model coincide with the actual stability state of epimetamorphic rock slopes, which 
outperforms the BP neural network model by contrast. Lastly, the ANFIS model was employed 
to predict the stability of Wangjiazhai slope, the fine prediction capability for the stability of 
epimetamorphic rock slopes was verified again. 
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INTRODUCTION 
Epimetamorphic rock is widely distributed in mountainous area of southeast of Guizhou 

province in China. It occupies roughly a quarter of the aggregate area of this province. The 
analogical circumstance can also be seen in other regions of China such as Hunan and Guangxi. 
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Many engineering problems have come up due to the epimetamorphic rock, and generally they 
have such common properties as follows: the existence of a thicker weathered layer comparing to 
normal ones, and the presence of extremely broken rock mass. Both the two parts contribute to the 
instability of the weathered layer. It will probably lead to the failure of slopes or landslides. Only in 
Guizhou province, a number of large landslides can be found in weathered layer of epimetamorphic 
rock region (Fig. 1 illustrates a overview of epimetamorphic rock landslide after treatment).It not 
only results in a huge loss of highway construction and the increase of project cost, but prolong the 
construction duration also. Moreover, it seriously threatens the security of people’s life and 
property. 

 

Figure 1: Overview of an epimetamorphic rock landslide after treatment 

A number of methods to assess slope stability are available. And the most used ones focus on 
some limit equilibrium methods such as Bishop Method [1] and Janbu Method [2]. Concerning that 
the structure of rock mass is of discontinuity in macroscopic perspective and its physical and 
mechanical properties are highly nonlinear in microscopic perspective, the stability of rock slopes 
is affected synthetically by both geological and engineering factors. Since these factors have 
characteristics of randomness, fuzziness, variableness and other uncertainty, stability assessment of 
slopes becomes a typical nonlinear problem. In other words, it is difficult to be presented by simple 
mechanical and mathematical models. Consequently, some researchers employ gray system theory 
(Chen 1999) [3], fuzzy methods (Zhang 2000) [4] and some other comprehensive assessment 
methods embedding experts’ opinions to evaluate the stability of slopes. Whereas every expert 
would have different judgments, the results can be affected largely by the subjective factors of 
evaluators. 

Artificial neural network (ANN) develops fast recently. It simulates the neural processing 
pattern of human’s brain to conduct parallel process of information and nonlinear mapping, and 
possesses the capacity of large scale computations. Therefore, many investigators apply ANN to 
assess the stability of slopes (Mohammed A 2001, Wang 2006, H. Gomez 2005, and P. LU 2003) 
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[5-8]. More specially, BP neural network has an enhanced functionality of nonlinear analyses 
of its simple algorithm and fine feasibility. It is widely employed in geotechnical engineering 
including stability analysis of slopes (M. G. Sakellariou 2005, Wang 2005, Chen 2001) [9-11]. 
Generally, BP neural network is of low efficiency and likely to become trapped in local minima 
the training. Additionally it is difficult to determine the number of hidden layers. In order to make 
up for the insufficient of BPNN, some modified and novel assessment methods, e.g. generalized 
regressive neural network (LAN 2009) [12], RBF neural network (Fu 2003) [13], T-S fuzzy neural 
network (Chen 2005) [14], the combination of genetic algorithm with neural network (HE 2002, 
XUE 2007) [15-16], ant colony clustering algorithm (GAO 2009) [17]et.al. were developed for 
estimating the stability of slopes. 

Current research studies devote into the integration of artificial neural network and fuzzy 
inference system. And it is referred to as adaptive neuro-fuzzy inference system (ANFIS) (Jang 
JRS 1993) [18]. ANFIS have such excellent properties that it is able to give a quick convergence 
a fine stability and its training results are of uniqueness etc.. By embedding the experts’ fuzzy 
inference process into neural network, it gives specific physical significances to the nodes and 
weighs of neural network. Simultaneously the system has both the adaptive capability and 
ability of neural network, which overcomes the insufficient of bad learning ability in conventional 
fuzzy inference system. Hence, ANFIS has been used to deal with some practical problems in 
geotechnical engineering [19-22], but in available literatures, there is no application example which 
employs ANFIS in stability assessment of slopes. 

Therefore, being supported by the Project of Science and Technology of West 
of the Ministry of Transportation of China with the title as slope stability of embankments in 
weathered layer of epimetamorphic rock series of mountainous area in Guizhou province (Project 
No. 200631880237), we made detailed investigation of 53 slopes in the vicinity of Kaili-Sansui 
highway in epimetamorphic rock region. In the course of this work, firstly we selected such 
parameters of the slope from the obtained data, as bulk density γ, the height H, the inclination β, 
cohesion c and internal friction angle ϕ to form the input vector, and the stability state be the only 
output variable. Secondly from the 53 data pairs of slopes, we used 41 ones for forming the 
data set while the remaining 12 ones for validating the prediction, i.e. checking data set. Then 
on ANFIS, we established a stability assessment model for epimetamorphic rock slopes. Lastly 
identified model was tested in the prediction of stability of Wangjiazhai slope. 

FUNDAMENTALS AND ARCHITECTURE OF ANFIS 
ANFIS is a branch of fuzzy inference system which mostly utilizes Sugeno and Takagi’s 

of fuzzy reasoning (Jang JSR 1993) [18]. It comprises of premise part and consequent part with 
simplified fuzzy if-then rules as follows:  

If x is A and y is B, then z = f(x, y). 

where A and B are the fuzzy sets in precise part, and f(x, y) is a nonfuzzy equation in consequent 
part. Generally, f(x, y) is a polynomial of input variables A and B. If f(x, y) is a first-order 
polynomial, the generated fuzzy inference system is called first-order Sugeno and Takagi (ST) 
fuzzy model. 

Fig. 2a utilizes a two-rule two-input first-order ST fuzzy model to illustrate the fuzzy 
reasoning mechanism. It has two input variables x and y, one output variable z, and contains two 
if-then fuzzy rules: 
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Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1; 
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2. 

 

 

Figure 2 (a): The first-order ST fuzzy model 

 

 

Figure 2 (b): Corresponding ANFIS architecture 

The corresponding equivalent ANFIS architecture is shown in Fig. 2b. The ANFIS has 5 
layers, node function in the same layer are of the same function family as described below. Note 
that Oij denotes the output of the ith node in layer j. 

Layer 1: Every node i in this layer is an adaptive (square) node with a node function 

( ) 2,1  ,1 == ixuO Aii                              (1) 

where x is the input to node i, and A is the linguistic label (small, large, etc.) associated with this 
node function. In other words, 1iO  is the membership function of Ai and it specifies the degree to 

which the given x satisfies the quantifier Ai. In fact, any continuous and piecewise differentiable 
functions are qualified for node functions in this layer, such as usually used bell-shaped function 
with maximum equal to 1 and minimum equal to 0, as follows: 
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where {ai, bi, ci} is the parameter set. As the values of these parameters change, the bell-shaped 
functions vary accordingly, thus exhibiting various forms of membership functions on linguistic 
label Ai. Parameters in this layer are referred to as the ‘premise parameters’. 

Layer 2: Each node in this layer calculates the ‘firing strength’ of each rule via 
multiplication: 

2 ( ) ( ), 1,2
i ii A BO u x u y i= =                          (3) 

Layer 3: The ith node in this layer calculates the ratio of the ith rule’s firing strength to the 
sum of all rules’ firing strengths: 

3
1 2

1, 2i
i

wO w i
w w

= = =
+

，                         (4) 

For convenience, outputs in this layer will be called ‘normalized firing strength’. 

Layer 4: Every node i in this layer is an adaptive (square) node with a node function: 

4 ( )i ii i i i iO w f w p x q y r= = + +                       (5) 

where iw  is the output of layer 3, and {pi, qi, ri} is the parameter set. Parameters in this layer 
will be referred to as ‘consequent parameters’. 

Layer 5: The single node in this layer is a fixed (circle) node labeled Σ that computes the 
‘overall output’ as the summation of all incoming signals, i.e. 

5 = i i
ii i

i

w f
O w f

w
=  

                           (6) 

Thus, an adaptive network is constructed which is functionally equivalent to the ST fuzzy 
model. But the adaptive architecture is not exclusive, we can merge layer 3 and layer 4 and obtain 
an equivalent architecture with 4 layers. Similarly, the weight normalization can be performed in 
the last layer of the network. Most extremely, we can even reduce the whole network to a single 
adaptive node with the same parameter set (Jang JSR 1997) [23]. 

There exit mainly two methods to generate the training structure of ANFIS, i.e. grid partition 
method and clustering method. While the learning rules are focused on error back-propagation 
learning rule and hybrid learning rule (Jang JSR 1997) [23]. 
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DEVELOPMENT OF STABILITY ASSESSMENT MODEL 
OF SLOPES BASED ON ANFIS 

Preparation of the database 

We have investigated 53 typical slopes in detail on the sides of Kaili-Sansui highway (see 
Fig. 3) which located in epimetamorphic rock region and obtained primary data. On the basis of 
these data, we extracted such 5 parameters of the slope as bulk density γ, height H, inclination β, 
cohesion c and internal friction angle ϕ  to form the input vector (for a part of slopes which have 
weak structural plane, c and ϕ are the cohesion and internal friction angle of weak structural 
plane, respectively), while the stability state of slope to be the output (0 denotes the failure of 
slope and 1 denotes the stable slope). The total 53 data pairs of slopes were divided into two 
parts, 41 pairs were used to train the ANFIS model, while the remaining 12 pairs to test the 
prediction. Training data set and checking data set are presented in Table 1 and Table 2, 
respectively. 

 

    
(a) Location of Guizhou province in China   (b) Location of Kaili-Sansui highway in Guizhou  

Figure 3: Specific location of Kaili-Sansui highway 

 

Table 1: Training data set of epimetamorphic rock slopes 

Code Location of slope 
Bulk 

density/ 
(kN/m3) 

Height/m 
Inclination 

/(°) 
Cohesion 

/kPa 

Internal 
friction 
angle/ 

(°) 

Actual 
stability 
state of 
slope 

1 
Slope in Tailie elementary 

school 
20 10 10 8 20 Failure(0) 

2 
Slope on the right of 

Circle E of Tailie 
Overpass 

27.3 30 30 37.3 31 Stable(1) 

3 Landslide on the left of 20.6 35 25 26.31 22 Failure 
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K71+625～K71+700  (0) 

4 Slope of Pingxite Bridge 21.6 50 40 6.5 19 
Failure 

(0) 

5 
Slope on the right of 
K76+085～K76+200  

22.4 35 28 28.9 24 
Failure 

(0) 

6 
Slope on the left of 

K77+920～K78+100 
23.2 33 30 31.2 23 

Failure 
(0) 

7 
Slope on the left of 

K79+165～K79+300  
26.8 26 30 37.5 32 Stable (1) 

8 
Slope on the right of 
K79+920～K80+035 

27.4 42 25 38.1 31 Stable (1) 

9 
Landslide on the right of 
ZAK0+315～ZAK0+407 

21.8 50 50 32.7 27 
Failure 

(0) 

10 
Slope on the left of 

K83+260～K83+360 
21.8 60 35 27.6 25 

Failure 
(0) 

11 
Slope on the right of 
K88+300～K88+420 

26.5 21 30 35.4 32 Stable (1) 

12 
Slope on the right of 
K88+700～K88+876 

26.5 39 35 36.1 31 Stable (1) 

13 
Slope on the right of 
K89+730～K89+841 

27 69 30 35.8 32 Stable (1) 

14 
Slope on the right of 
K90+225～K90+345  

27 22 25 38.4 33 Stable (1) 

15 
Slope on the left of 

K98+520～K98+710 
21.4 52 50 28.8 20 Failure(0) 

16 
Slope on the left of 

K99+120～K99+260 
26 55 38 42.4 37 Stable(1) 

17 
Slope on the left of 

K100+280～K100+410 
26 30 25 39.4 36 Stable(1) 

18 
Slope on the left of 

K100+615～K100+915 
25.6 26 25 38.8 36 Stable(1) 

19 
Landslide on the left of 
K103+330～K103+450 

20 53 45 30.3 25 Failure(0) 

20 
Slope on the left of 

K104+610～K104+805 
25.8 50 30 34.7 33 Stable(1) 

21 
Landslide on the left of 
K104+892～K105+052 

21.8 99 35 28.8 26 Failure(0) 

22 
Landslide on the left of 
K105+260～K105+330 

21.8 60 30 31.2 25 Failure(0) 

23 
Slope on the left of 

K106+268～K106+577 
24 51 30 41.5 36 Stable(1) 

24 
Slope on the left of 

K106+992～K107+085 
24 50 35 40.8 35 Stable(1) 

25 
Landslide on the left of 
K107+856～K107+968 

20.6 70 35 27.8 27 Failure(0) 

26 
Landslide on the left of 
K108+960～K109+010 

20.6 55 35 32.4 26 Failure(0) 

27 
Slope on the left of 

K109+841～K109+900 
25.8 40 27 38.2 33 Stable(1) 

28 
Slope on the left of 

K110+200～K110+274 
25.8 45 25 39.4 33 Stable(1) 

29 Landslide on the left of 21.1 31 40 33.5 28 Failure(0) 
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K110+421～K110+500 

30 
Landslide on the left of 
K110+980～K110+240 

21.1 75 30 34.2 26 Failure(0) 

31 
Slope on the right of 

K112+720～K112+815 
26.6 52 25 42.4 37 Stable(1) 

32 
Slope on the left of 

K113+500～K113+580 
26.6 42 35 44.1 38 Stable(1) 

33 
Slope on the left of 

K114+060～K114+167 
26.6 60 35 40.7 35 Stable(1) 

34 
Slope on the left of 

K114+224～K114+258 
25.8 40 30 41.2 35 Stable(1) 

35 
Slope on the left of 

K117+200～K117+412 
25.8 33 30 43.3 37 Stable(1) 

36 
Front slope of �tunnel in 

SongjieyaK122+310 
21.7 60 45 32 27 Failure(0) 

37 
Landslide on the right of 
K122+350～K122+455 

20.6 65 40 28.5 27 Failure(0) 

38 
Landslide on the left of 
K127+440～K127+590 

21.5 70 40 29.8 26 Failure(0) 

39 
Slope on the left of 

K127+761～K127+882 
26.5 36 34 42.9 38 Stable(1) 

40 
Landslide on the left of 
K137+650～K137+730 

20.8 45 30 15.6 20 Failure(0) 

41 
Landslide on the left of 
K138+624～K138+797 

20.8 40 30 14.8 21 Failure(0) 

 

Table 2: Checking data set of epimetamorphic rock slopes 

Code Location of slope 
Bulk 

density/ 
(kN/m3) 

Height/m 
Inclination 

/(°) 
Cohesion 

/kPa 

Internal 
friction 
angle/ 

(°) 

Actual 
stability 
state of 
slope 

1 
Landslide on the right of 

K75+760～K76+000 
19.6 58 40 29.6 23 Failure(0)

2 
Slope on the right of 

ZBK0+000～ZBK0+185 
25.4 35 20 33 33 Stable(1)

3 
Landslide on the left of 
K84+602～K85+185 

22.4 50 50 29.3 26 Failure(0)

4 
Slope on the right of 
K91+614～K91+660 

26.2 30 35 41.5 36 Stable(1)

5 
Slope on the right of 
K91+720～K91+771 

26.2 36 23 42.3 36 Stable(1)

6 
Slope on the left of 

K100+950～K101+300 
25.6 32 30 39.8 36 Stable(1)

7 
Slope on the left of 

K102+691～K102+880 
25.6 60 35 36.8 34 Stable(1)

8 
Slope on the right of 

K118+360～K118+549 
26.2 37 30 42.8 37 Stable(1)

9 Slope on the right of 26.2 68 35 43.8 38 Stable(1)
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K119+823～K119+951 

10 
Landslide on the right of 
K124+340～K124+562 

20.6 42 30 32.4 26 Failure(0)

11 
Slope on the right of 

K131+280～K131+380 
26.5 54 42 41.8 36 Stable(1)

12 
Landslide on the left of 
K138+840～K138+930 

20.8 53 30 15.4 21 Failure(0)

Architecture of ANFIS model 

The 5 quantities mentioned above were chosen as input variables, and the stability state of 
epimetamorphic rock slope as output variable. Each input variable had two membership functions 
of Gaussian type. The grid partition method was utilized to generate the training structure, and the 
hybrid learning rule was employed in the learning procedure. The training data set was performed 
learning and training constantly till the error measure of output was tolerant; the checking data set 
was used to test the prediction capability and give a cross validation of the ANFIS model. The 
schematic of the architecture of ANFIS is illustrated in Fig. 4. 

 

Figure 4: Schematic of the architecture of ANFIS model 

Evaluation of the model 

The training and checking error curves are shown in Fig. 5, which demonstrates that the 
training and checking error converge simultaneously, thus the same inherent law is shared by the 
training and checking data within the precision requirement of engineering. 
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Figure 5: Error curves of ANFIS model 

 

In order to demonstrate the superiority of ANFIS model, a BP neural network (BPNN) 
model was established by contrast. In BPNN, inputs are also bulk density γ, height H, inclination 
β, cohesion c and internal friction angle ϕ, of the slope and the stability state of the slope is output 
(0 denotes the failure of slope and 1 denotes the stable slope). There are 10 hidden layers, except 
for that transfer function of output layer is purelin function, transfer functions of other layers are 
tansig function; learning function employs learngdm function; training function adopts trainlm 
function and error performance function uses mse function. The specific theory and method of BP 
neural network can refer to these literatures: M.G.SAKELLARIOU 2005, Wang 2005, and Chen 
2001[9-11]. 

Fig. 6 shows the comparison of training values of ANFIS model and BP neural network 
model with actual stability state values of epimetamorphic rock slopes. It is found that both 
ANFIS and BPNN can achieve fine training precision, i.e. the training values dramatically 
coincide with the actual values. 
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Figure 6: Comparison of training values of ANFIS and BPNN with actual values 

The checking results of ANFIS model and BPNN model are compared with the actual 
stability state value as illustrated in Fig. 7. It is observed that with respect to the same checking 
data set, the checking results of ANFIS model are perfectly identical to the actual stability state 
values of slopes, whereas BPNN model makes a wrong prediction which is not agree with the 
actual stability state of a slope. More specifically, the error rate of BPNN reaches 8.3 per cent. 
Hence, due to its higher accuracy rate of prediction, it is feasible to employ ANFIS model to 
assess the stability of epimetamorphic rock slopes. 
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Figure 7: Comparison of checking results of ANFIS and BPNN with actual values 
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Influence factors on model precision 

The author figures out the following factors which can influence the performance of 
network: 

(1) Accuracy of data set and the number of data pairs. ANFIS is based on the training data 
set. It is able to elect rules in learning procedure of structure and eliminate a part of data pairs, but 
the prediction precision of system is determined by the accuracy of data population. Additionally, 
a smaller number of data pairs will lead to an inferior learning capability, thus the system stability 
cannot be guaranteed. 

(2) The number of input variables of ANFIS. When the number of inputs increases, 
accordingly the number of dimensions of the system will increase, the learning procedure will be 
more complicated. Especially, when there is not sufficient accuracy of data pairs, the checking 
precision is very likely to fail to satisfy the requirement and even cannot converge. 

(3) The number of membership functions pertaining to each input. Theoretically, more 
membership functions amount to a smaller fuzzy interval, which will contribute to a higher 
training precision. However, it should be kept in mind that the checking precision will probably 
decrease along the increasing number of membership functions. Generally, two membership 
functions for each input will be in the tolerance of engineering requirement. 

Engineering application of ANFIS model  

Take Wangjiazhai Slope (see Fig. 8) in the vicinity of Kaili-Sansui highway for example to 
test the prediction capability of ANFIS model established herein for the safety of epimetamorphic 
rock slopes. The inputs values of model for this slope are such as follows: γ = 19.8 kN/m3, H = 98 
m, β = 26°, c = 8.6kPa, ϕ = 17.8°. Loading the above data into the ANFIS model developed in 
the previous context, we can obtain the output value for -0.07 i.e. the slope is of failure which 
comes agree with the actual circumstance. Actually, Wangjiazhai slope is a landslide (Jia 2009) 

[24]. It is a proof to indicate the fine prediction function of ANFIS model developed in this work 
for stability assessment of slopes in epimetamorphic rock region. 
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Figure 8: Location of Wangjiazhai slope 

CONCLUSIONS 
(1) With respect to the complex nonlinear relationship of influence factors on slopes, this 

paper devotes into the establishment of ANFIS model to perform the stability assessment of 
epimetamorphic rock slopes by taking advantage of the dynamic nonlinear analyses capability of 
ANFIS. 

(2) A stability assessment model for epimetamorphic rock slopes based on ANFIS was 
established. In this model, 5 parameters which had significant influence on the stability of 
epimetamorphic rock slopes were selected to form the input vector, while the stability state of the 
slope be the output variable; 41 engineering cases were used for training the model, and 12 
engineering cases for checking the system. By contrast with the most common BP neural network 
model, the ANFIS model is observed to outperform the BPNN. 

(3) An engineering project was employed to test the prediction capability of ANFIS model 
developed in this work for the safety of epimetamorphic rock slopes. A fine prediction 
performance of this ANFIS model was found for stability assessment of slopes in 
epimetamorphic rock region. 
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