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Abstract: In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures 
of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was 
presented based on three-dimensional Morgenstern-Price method to investigate three-dimensional effect of landslide in stability 
analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The 
time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the 
influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was 
investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure 
probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c and f on reliability index 
of slopes was taken into discussion and the changing trend was observed. 
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1 Introduction 
 

The establishment of limit state equation for slope 
reliability analyses is based on the calculation of factor 
of safety of the slope [1] which can be obtained usually 
by two-dimensional limit equilibrium analysis methods. 
Generally, two-dimensional limit equilibrium analysis 
method can meet the engineering requirement. However, 
in engineering practice, landslide mass is a spatial 
assemblage of a variety of rock and soil masses and 
subjected to asymmetric external forces, also its failure 
surface is of complicated geometry. It should be more 
reliable to analyze and evaluate the slope stability in 
three dimensions. Hence, based on two-dimensional limit 
equilibrium slice method, many researchers proposed a 
number of analysis methods of three-dimensional slopes 
upon different assumptions [2−5]. Afterwards, the 
three-dimensional Morgenstern-Price method (3D M-P 
method for short) was developed to account for both the 
static equilibrium in three directions and the moment 
equilibrium about the sliding principal axis [5]. With 
brief computation formula in the 3D M-P method, a 
three-dimensional factor of safety, which is of stable 
convergence, can be obtained quickly by simple 

iterations rather than solving for the enormous equations. 
Such merits bring in its wide application in practical 
engineering. 

There have been many probes on the 
two-dimensional reliability analysis of the slope [6−10], 
but a few have devoted into the reliability of three- 
dimensional limit equilibrium methods for the slope 
stability [11−14]. Three-dimensional simplified Bishop 
Method is applied to build the mechanic model and 
Monte-Carlo method is used to form random sample of 
geotechnical parameters to solve for the reliability index 
of the three-dimensional slope. Then, the influence of 
both the variation and various probability distribution 
forms of strength parameters on the reliability index is 
discussed [11]. But its mechanic model only accounts for 
the static equilibrium in two directions which is 
excessively simplified and Monte-Carlo method is 
deficient for its low computation efficiency despite of its 
capacity to acquire enough accuracy. Spatial random 
field theory is imposed into three-dimensional simplified 
Bishop Method. The reliability problem of anisotropic 
soil slopes is solved by partial average approach and it 
can make spatial prediction of the slope by computing its 
maximum failure probability [12−13]. But, it is not 
consistent to the real situation by assuming an identical  
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mean value for c and φ. Finite Element Method is 
adopted to build the three-dimensional slope model and 
follow the solution of the reliability index via Monte- 
Carlo method [14]. Whereas, there are a number of 
factors included in the FEM model, such as the selection 
of constitutive model to simulate the soil, the meshing 
form and calculation arguments. Moreover, the 
established three-dimensional model is relatively 
complex such that the time-consuming of Monte-Carlo 
method to solve for reliability values is intolerable. 
Hence, a new calculation approach with superior 
efficiency was developed based on 3D M-P method to 
analyze the reliability of the three-dimensional slope 
herein. 

As the formula of the stability factor of safety for 
3D M-P method is a highly complex implicit recursive 
expression, it cannot be achieved to establish an explicit 
limit state equation in conventional ways when making 
reliability analysis. For two-dimensional slopes, 
investigators take advantage of response surface 
quadratic function method [15], neural network [16], and 
Support Vector Machine [9] to approximate the limit 
state equation, respectively. The quadratic polynomial 
(response surface method) has a limited capacity to 
approximate the nonlinear functions, and neural network 
is of high probability to trap into local minima. As a 
result, the computation efficiency and accuracy can be 
influenced very easily. Therefore, the small sample 
technique in statistical learning theory is introduced to 
investigate the calculation method of reliability for 
three-dimensional slopes based on Support Vector 
Machine (SVM). 

Moreover, the rock-soil masses on the earth surface 
experience a chronic weathering. This results in the 
varying values of shear strength parameters, along with 
the increase of weathering depth over time [17] which 
can be denoted that the shear strength parameters of 
slopes have time effect. Utilizing the formula of shear 
strength parameters of soil mass against time in Ref.[18], 
we analyze the time-variant reliability of three- 
dimensional slopes in association with discussion about 
the variation of reliability versus variation coefficients in 
case study. 
 
2 Introduction of 3D M-P method for slope 

stability 
 
2.1 Basic assumptions 

The selection of coordinates and column partition 
are illustrated in Fig.1 and the free-body diagram of a 
single column is shown in Fig.2. Assumptions are 
presented as follows [5]: 

1) To a specific column (i, j), the intercolumnar 
shearing force V(i, j) and normal force E(i, j) exerting on 

 

 
Fig.1 Column partition of landslide mass 

 

 
Fig.2 Free-body diagram of column 

 
row interfaces (surfaces ABFE and DCGH, parallel to 
surface YOZ, as shown in Fig.2) meet the following 
relationship:  

),(),(),( jijijji EfV                                                        (1) 
 
where λj is the scale factor; f(i, j) is the intercolumnar force 
function. This assumption is similar to that for 
two-dimensional Morgenstern-Price method. 

2) Force Q(i, j) acts on column interfaces (surfaces 
ADHE and BCGH, parallel to surface XOY, in Fig.2) in 
the horizontal direction which is parallel to axis Z. 

3) The angle between the shearing force T(i, j) acting 
on the bottom slipping surface and surface XOY is of 
magnitude of ρj. Note that ρj is positive when the 
component of shearing force directs in the positive Z. 

4) Assume that columns in a specific column (Z is a 
constant) have an identical ρj, otherwise, to different 
values of coordinate Z, the distribution form of ρj is 
given by  
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2.2 Computation flow of factors of safety for 3D M-P 

method 
For 3D M-P method, factors of safety of the slope 
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can be derived in steps as follows: 
1) When the centric of rotation, long and short axes 

and mechanical strength parameters (e.g. c and φ) are 
specified, the landslide mass is divided into columns in L 
rows and M columns automatically; 

2) For the determinate initial factors of safety of the 
three-dimensional slope as 00

0
S3  , , F  or η0, κ0, calculate 

the gravities of all the columns W(i, j); 
3) Solve Eqs.(4)−(8), and substituting the values 

into Eq.(3) yields the value of F3S: 
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 )( ),(),(),(),(),(),(),( jiXjiYjiYjiXjiXjiji nmnmmWR  

 ),(),(),(),(),( (tan jiYjiXjijiji nmAu   

),(),(),(),( ) jijijiXjiY ACnm                                    (4) 
 

),(),(),( jiXjiji nWP                                                      (5) 
 

 ),(),(),(),(),( tan)( jijiYjiXjijji mmf   

S3),(),(),( )( Fnnf jiYjiXjij                                (6) 
 

  ),1(),1(),1(),1(),1( tan)( jijiYjiXjijji mmf   

S3),1(),1(),1( )( Fnnf jiYjiXjij                       (7) 
 

  ),(),(),(),1(),1( tan)[( jijiYjiXjijji mmf   

),1(S3),(),(),1( /])( jijiYjiXji Fnnf                     (8) 
 
where u(i, j) is the pore water pressure; A(i, j) is the area of 
the column base; C(i, j) is the cohesion intercept; f(i, j) is the 
factor of safety of the j-th row; W(i, j) is the gravity of the 
column; nX(i, j), nY(i, j) and nZ(i, j) are directional derivatives 
of the normal lines of slipping surface; mX(i, j), mY(i, j) and 
mZ(i, j) are directional derivatives of the shearing force  
T(i, j). 

4) Apply the obtained F3S and the end conditions: 
E(0, j)=0, E(L, j)=0 into Eq.(9) to determine E(i, j) (i=1, 2, …, 
L; j=1, 2, …, M): 
 

),(),(S3),1(,)1(),1(),(),( jijijiijijiji RPFEE            (9) 
 

5) Use the obtained F3S and E(i, j) into Eq.(10) to 
determine the normal stress N(i, j) exerting on the base of 
column:  
N(i, j)= 
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              (10)  
6) If ρ in Eq.(2) is a constant, substituting the values 

of F3S and N(i, j) into Eqs.(11)−(12), we obtain the value 
of ρ: 
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7) If ρ in Eq.(2) is not a constant, using the values 

of F3S and N(i, j) in Eq.(13)−(14), we have the values of η 
and κ: 
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8) Substituting the value of E(i, j) obtained in Eq.(4) 

into Eq.(15) , we have 
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where d(i, j) is the average projection length of the base of 
the (i, j)-th column in the direction of axis Y and b(i, j) in 
the direction of axis X (see Fig.3). 
 

 
Fig.3 Schematic diagram of plane forces exerting on single 

column 
 

9) Check if they meet the requirements as follows: 

,1
0
S3S3  FF  |λ−λ0|≤ε2 and |ρ−ρ0|≤ε3 or [(η−η0)

2+(κ− 

κ0)
2]1/2≤ε3 (ε1, ε2 and ε3 are the prescribed calculation 
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accuracies). If they do, then the obtained F3S, λ, ρ or η 
and κ are the solutions; otherwise, let ,S3

0
S3 FF   λ0=λ 

and ρ=ρ0 or η=η0, κ=κ0 return to step 3) to recalculate till 
they meet the requirements. 
 
3 Reliability analyses for three-dimensional 

slopes based on SVM 
 
3.1 Optimal fitting algorithm of SVM 

SVM theory based on the small sample support was 
derived from the statistically learning method proposed 
by VAPNIK et al. The basic principle of the algorithm 
can consult Ref.[19]. 

The radial basis kernel function is a widespread 
kernel function and its corresponding feature space is 
infinite-dimensional in which a limited number of data 
samples are linearly separable. Hence, applying radial 
basis kernel function to the expression of SVM nonlinear 
fitting function, we have 
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where γi is a constant on which the width of function 
around the center depends. 
 
3.2 Determination method of sample points and 

solution details of reliability 
Assuming that there are a set of parameters with 

greater uncertainties among basic parameters which 
influence the slope reliability, we denote them as X=(x1, 
x2, …, xd), the corresponding means as μ=(μ, μ2, …, μd), 
the mean square error as σ=(σ1, σ2, …, σd) by analogy. 
According to the design method of orthogonal test and 
‘3σ’ principle in statistical theory, we start to sample the 
basic random variables. For the first sample, we let it be 
X0 =(μ1, μ2, …, μd), then continue the sampling such that 
X1=(μ1+fσ1, μ2, …, μd), …, Xj=(μ1, μ2, …, μj+fσj, …, 
μd), …, Xd=(μ1, μ2, …, μd+fσd), Xd+1=(μ1−fσ1, μ2, …, 
μd), …, Xd+j=(μ1, μ2, …, μj−fσj, …, μd), …, X2d=(μ1, 
μ2, …, μd−fσd) (now f=3) and eventually obtain 2d+1 
groups of random samples Xi (i=1, 2, … , 2d+1). 
Substitute each group into 3D M-P method to calculate 
the factor of safety of stability for the three-dimensional 
slope F3S. Letting F3S−1=yi, we have 2d+1 groups of data 
pair (Xi, yi). 

To determine the parameters biii  , ,*   (i=1, 
2, …, n) in Eq.(16), the fittings for the 2d+1 groups of 
sample data pair (Xi, yi) are carried out on the basis of the 
SVM data fitting method in Eq.(16). Then, we get the 
fitting expression of structural performance function of 
stability for the three-dimensional slope based on SVM 
as 
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where the superscript “(0)” indicates the first fitting. 

Using design points to solve Eq.(17), reliability 
index β(0) and the corresponding design point X*(0) can be 
obtained. Then, letting X*(0) be the datum point X0 and 
f=1, we update the 2d+1 groups of random samples and 
repeat the prescribed calculation again. 
 
3.3 Solution steps of three-dimensional slope reliability 

Assuming that random variables xi (i=1, 2, …, n) 
which influence the stability of the three-dimensional 
slope are normally distributed (other distribution forms 
can be transformed to the normal distribution in 
equivalent), solution steps to obtain the reliability index 
for the three-dimensional slope based on SVM method 
are presented as follows: 

1) Compute the performance function values at the 
present 2d+1 groups of sample points by 3D M-P 
computation program; 

2) Select the optimal supported vector from the 
2d+1 groups of performance function values by SVM 
program, and derive the relevant coefficients iii   ,*  

and b (i=1, 2, …, n) in Eq.(17), then yield the fitting 
performance function g(x); 

3) Apply design point method to solve structural 
reliability index β(k) and the corresponding design point 
X*(k), in which the superscript k indicates the k-th 
iteration. 

4) Check if it meets the convergence requirement, 
)1()(  kk  <ε, where ε is the prescribed allowance 

error. If it does, stop the iteration; otherwise, select the 
corresponding design point and return to step 1) to iterate 
until the value of β(k) converges. 
 
4 Case study 
 
4.1 Case study of reliability for three-dimensional 

slope 
The geometrical model of the slope adopts the case 

in Ref.[3]: knowing that the ratio of slope is 1:2, the 
height of slope is 12.2 m, the unit weight γ=19.2 kN/m3, 
the mechanic strength indexes c=29.3kPa and φ=20°, 
similar to the original case, the sliding surface is an 
ellipsoid of revolution, so we can use an arc to simulate 
the sliding surface in the plane of symmetric axis and an 
ellipsoid surface in the direction of axis Z. Suppose that 
the equation of sliding surface is  
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where X0=5.102 m, Y0=19.165 m, a=24.4 m and b=  
73.1 m. Uncertain factors are assumed to be c, φ and γ 
with variation coefficients as 0.2, 0.15 and 0.1, 
respectively, considering the likely variation range of 
each parameter. 

The expression form of structural performance 
function of the three-dimensional slope can be 
represented as g(x)=F3S(c, φ, γ)−1, and it can be solved 
by SVM method with a projected corresponding 
computation program. So, the reliability index can be 
obtained by steps as follows: 

1) Take the mean value of initial iteration points, 
namely X0=(29.3, 20, 19.2) and let f=3 in the first sample 
of design point. Using the method in Section 3.2, we got 
seven sample points. After performing seven times of 
procedure computation for three-dimensional slopes, 
seven performance function values of sample points were 
obtained. Taking advantage of SVM method to select the 
optimal supported vector, with some relevant coefficients 

iii   ,*  and b which could be obtained in Eq.(17), we 
determined the fitting performance function and finished 
the first round of computation. The results of the first 
round of iteration by design point method are shown as: 
the reliability index β(0)=3.491 6 and the corresponding 
design point X*(0) =(13.528 0, 13.789 3, 20.761 5). 

2) Let X*(0) be the iteration point and f =1, and 
repeat the previous calculation. The results are: the 
reliability index of the second round of iteration β(2)= 
4.330 4, and the third one β(3)=4.342 2. Since |β(3)−β(2)|= 
0.000 1<ε=0.005, the iteration is of convergence. After 
four rounds of iteration and 28 times of program 
calculation for the three-dimensional slope, we had the 
reliability index of stability for the three-dimensional 
slope, namely β=4.342 3, and the design point X*(3)= 
(10.233 1, 11.488 1, 20.129 0), in contrast to the result of 
Monte Carlo method in 100 000 times of sampling as 
β=4.291 8. Comparison among SVM method, response 
surface method and Monte Carlo method (results of 
Monte Carlo method have been widely accepted to be the 
exact solution) was performed, as listed in Table 1. 
 
Table 1 Comparison among different methods 

Method 
Iteration 

times 
Reliability 
index, β 

Relative 
error/% 

Relative 
workload/

% 

Response 
surface 

6 4.465 3 4.043 0.042 

SVM herein 4 4.342 3 1.177 0.028 

Monte-Carlo 100 000 4.291 8 — — 

 
It is shown that the workload of SVM method in 

reliability analysis for the three-dimensional slope 
decreases sharply compared with the exact method, but 

with corresponding computation accuracy. With respect 
to the fitting of complicated nonlinear performance 
functions, the method applied in this work is of 
superiority to response surface method. 
 
4.2 Time-variant reliability for three-dimensional 

slopes 
The weathering of rock-soil mass on the ground 

surface is chronic. It results in the increase of weathering 
depth over time, together with the varying of shear 
strength parameters. This can be defined that the shear 
strength parameters have time effect. In association with 
the case in Section 4.1, the expressions of values of shear 
strength parameters c and φ versus time are used: ci(t)= 
c0(0.352 5e−0.142 6t+0.612 1e−0.003 94t) and φi(t)=φ0·(0.182 2· 
e−0.341 5t+0.824 6e−0.002 72t) (in this case, c0=29.3 kPa and 
φ0=20°). Assuming that the variation coefficient keeps 
constant, applying the calculation method of reliability 
referred in Section 4.1, letting t equal 3, 6, 10, 15, 20, 25, 
30, 40, 50 a to compute the reliability value respectively, 
we obtain the results, as shown in Fig.4. 
 

 
Fig.4 Reliability variation of three dimensional slopes versus 

time 

 
From Fig.4, we can find that taking time effect of 

shear strength parameters of slope soils into account, the 
reliability index in 50 a descends by 52.54%, and the 
failure probability ascends from 0.000 705% to 1.966%, 
which indicates that methods that do not account for time 
effect will be unsafe when analyzing the reliability of 
slope. The varying of reliability for the three- 
dimensional slope deserves more attentions. 
 
4.3 Discussion 
4.3.1 Influence of combinations of variation coefficients 

of c and φ on reliability index 
Since the variation range of variation coefficients of 

c and φ is larger than that of γ, we can fix the variation 
coefficient of γ as nought for simplicity, and change the 
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values of variation coefficients of c and φ, respectively, 
to solve for the reliability index, as illustrated in Table 2 
and Fig.5. 
 
Table 2 Reliability value of different variation coefficients of c 

and φ 

Variation coefficient of φ, Vφ Variation 
coefficient 

of c, Vc 0.1 0.2 0.3 0.4 0.5 

0.1 7.634 0 4.665 3 3.334 6 2.573 4 2.011 9

0.2 5.024 0 3.810 9 2.953 4 2.380 9 1.930 4

0.3 3.632 0 3.076 5 2.563 8 2.156 6 1.842 9

0.4 2.773 4 2.522 0 2.191 3 1.942 7 1.690 6

0.5 2.280 4 2.134 4 1.925 8 1.702 8 1.533 8

 

 
Fig.5 Three-dimensional surface diagram of β on different 

combinations of variation coefficients of c and φ 

 
It can be concluded from Table 2 and Fig.5 that the 

effect of the varying of variation coefficient of φ is 
slightly larger than that of c, and the reliability index 
falls down rapidly with the increase of variation 
coefficients of c and φ. Accounting for the fact that the 
reliability value is magnificently affected by the 
magnitudes of variation coefficients of c and φ, it is 
necessarily required to get more accurate variation 
coefficients by tests as many as possible. 
4.3.2 Time-variant reliability of three-dimensional slope 

on various variation coefficients 
For brevity, values of c, φ and γ all equal 20, with an 

identical variation coefficient and the same amplitudes of 
variation. When changing the variation coefficient to be 
0.05, 0.1, 0.15, and 0.2, respectively, adopting the case in 
Section 4.1 and the method in Section 4.2 again, we 
obtain the values of the time-variant reliability index for 
the three-dimensional slope. The results are shown in 
Table 3 (where β0.05 denotes the value of reliability index 
for the three-dimensional slope when the variation 
coefficient equals 0.05, others by analogy) and Fig.6. 

Table 3 and Fig.6 illustrate that the reliability index 
decreases gradually when the variation coefficient 
increases. The decrement descends gradually on the same 
increment of variation coefficient (all equal 0.05). Table 

4 shows that the value of β0.10/(β0.05−β0.10) is 
approximately equal to 1, β0.15/(β0.10−β0.15) to 2 and 
β0.20/(β0.15−β0.20) to 3. A specific regular pattern can be 
observed for the decrement of the reliability index. 
 
Table 3 Time-variant reliability index for three-dimensional 

slope on different variation coefficients  

Time/a β0.05 β0.10 β0.15 β0.20 

0 11.746 5.872 3.914 2.936 

3 9.369 4.694 3.129 2.347 

6 8.012 4.014 2.677 2.019 

10 6.934 3.477 2.320 1.740 

15 6.162 3.076 2.048 1.542 

20 5.623 2.804 1.873 1.410 

25 5.192 2.592 1.726 1.299 

30 4.827 2.411 1.603 1.207 

40 4.105 2.071 1.382 1.035 

50 3.449 1.738 1.156 0.867 

 

 
Fig.6 Time-variant reliability index for three-dimensional slope 

vs variation coefficients 

 
Table 4 Variation of decrement amplitude of reliability index  

Time/a
10.005.0

10.0



 15.010.0

15.0





 
20.015.0

20.0





0 0.999 7 1.999 0 3.002 0 

3 1.004 1 1.999 4 3.001 3 

6 1.004 0 2.002 2 3.068 4 

10 1.005 8 2.005 2 3.000 0 

15 0.996 8 1.992 2 3.047 4 

20 0.994 7 2.011 8 3.045 4 

25 0.996 9 1.993 1 3.042 2 

30 0.997 9 1.983 9 3.048 0 

40 1.018 2 2.005 8 2.982 7 

50 1.015 8 1.986 3 3.000 0 
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5 Conclusions 
 

1) Based on 3D M-P method, applying SVM to 
approximate design point of highly nonlinear 
performance function, a new reliability analysis approach 
for the three-dimensional slope is developed. 

2) Case study verifies that the time-consuming of 
reliability analyses approach based on small samples is 
0.28% of that by accurate method when achieving 
corresponding accuracy that is superior to response 
surface method. 

3) Analyses on time-variant reliability for three- 
dimensional slopes show that it is unsafe not to account 
for time effect and the time-variant of reliability cannot 
be ignored. 

4) Values of variation coefficients of c and φ affect 
the reliability index largely and accurate variation 
coefficients are prerequisite to the reliability calculation. 
The decrement of the reliability index decreases 
gradually on the same increment of variation coefficient, 
which implies a specific regular pattern. 
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