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ABSTRACT: Cost optimization of Geogrid-Reinforced Pile-Supported Foundation (GRPSF) requires
the minimum construction cost among all design alternatives within both ultimate limit state (ULS) and
serviceability limit state (SLS) criteria. Usually, the optimization is conducted by selecting a limited
number of design alternatives based on experience and then comparing them, which often does not lead
to the real optimal design. This paper presents a novel optimization framework to systematically
determine the design parameters to achieve the minimum construction cost for GRPSF, considering
both ULS and SLS constraints that are relevant to post-construction performance and constructability.
This framework is a hybrid of surrogate modeling and Finite Element Method (FEM) to calculate the
post-construction settlement of GRPSF and search for the optimal design. Genetic Algorithm
improved Black Hole Algorithm (BH-GA) was developed to determine the optimal values of design
variables, including pile length and spacing, pile cap geometry, and geogrid layers and layout. The
proposed approach can quickly identify the optimal design by exhausting all possible combinations of
design parameters. Two well-documented case histories of GRPSF were redesigned using this
framework, which validated its applicability and effectiveness in optimizing the design of GRPSF.

KEYWORDS: Geosynthetics, surrogate modeling, post-construction settlement, cost optimization,
Geogrid-Reinforced Pile-Supported Foundation

REFERENCE: Chen, C., Mao, F., Zhang, G., Huang, J., Zornberg, J.G., Liang, X. and Chen, J.
(2021). Settlement-based cost optimization of geogrid-reinforced pile-supported foundation.
Geosynthetics International. [https://doi.org/10.1680/jgein.21.00002]

1. INTRODUCTION

Cost optimization of civil and infrastructure projects is a
big concern for contractors and designers (Chikahiro et al.
2019; Jelušič and Žlender 2019, 2020; Song et al. 2020).
Typically, the practice of optimization in geotechnical
engineering involves forming a candidate pool of design
alternatives and then comparing their costs. However, it is
very difficult to develop a sufficient number of design

alternatives that meet all safety and performance criteria
(Aldwaik and Adeli 2014, 2017). The determination of
many design parameters requires solving empirical or
semi-empirical formulas in complicated, implicit formats,
which are usually carried out by a trial-error approach.
However, the situation becomes much more complicated
when many components of a geotechnical structure
interact with each other and the selection of one design
parameter for one component has a global impact on the
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selection of design parameters for other components.
Therefore, it is not practical to conduct a chain of trial-
error calculations inherent in an empirical/semi-empirical
design framework and at the same time consider the
design constraints of each design parameter.
The above-discussed issue is well encountered in the

design of Geogrid-Reinforced Pile-Supported Foundation
(GRPSF). GRPSF has been widely used to improve the
bearing capacity and reduce settlements of weak subgrade
that supports roadways, railways, and buildings. The types
of piles commonly used in GRPSF include cement fly-ash
gravel (CFG) columns (Zheng et al. 2008), driven piles
(Huang et al. 2005; Girout et al. 2018; Wu et al. 2019;
Shen et al. 2020), soil-cemented columns (Liu and Rowe
2015; Jamsawang et al. 2016), and stone columns (Ng
and Tan 2015; Zheng et al. 2020). Currently, GRPSF is
designed based on a semi-empirical method to estimate
the bearing capacity and settlements (BSI 2010), which in
general provides conservative and uneconomical results.
Typically, the design is carried out in trial-error iterations
to select a set of parameters, such as pile diameter and
spacing, and geogrid arrangement, which are initially
assigned and then varied until both bearing capacity and
settlement criteria are met. The major disadvantage of
this approach is that it relies heavily on the designer’s
experience and cannot exhaust all possible combinations.
For instance, to increase the bearing capacity, either pile
diameter or pile length can be increased, which may incur
different increases in costs. There lacks a systematic
approach to optimize the design.
Cost optimization of GRPSF aims at minimizing the

cost, and at the same time, satisfying design constraints
including, but not limited to, the post-construction settle-
ment and the bearing capacity of pile and ground (Gary
and Lucas 1987). However, three main hurdles challenge
the cost optimization of GRPSF design. Firstly, it is diffic-
ult and, sometimes, impossible to determine the spatial
variability of soil properties, soil-structure interface
behavior, and load variations. This is the reason that
empirical or semi-empirical methods are used to design
GRPSF in most cases. Secondly, even though the design
parameters are formulated in continuous mathematical
equations, many of these parameters cannot be treated as
continuous variables. For example, the number of geogrid
layers, k, is only meaningful with non-negative integers,
and pile length can only be varied at an increment of 0.1 m
each time due to the constructability issue. A similar
constructability constraint also applies to pile cap size, pile
spacing, and pile diameter. Therefore, the optimization of
GRPSF design is essentially a discrete-variable problem
(Jelušič and Žlender 2018), which makes the commonly
used gradient-based optimization methods unsuitable.
Thirdly, boundary conditions are complex and difficult to
determine in explicit equations, such as allowable post-
construction and differential settlements (Wang et al. 2011;
Chen and Zhang 2013). Model test has proved to be a
powerful approach to optimize the arrangement of
reinforcement, but its application is limited to the project
that the cost of model test can be offset by the cost saving
due to design optimization. (Ali et al. 2014; Li et al. 2019).

The Finite Element Method (FEM) is often used as an
alternative fordetermining the settlement ofGRPSFduring
the construction and service stages (Han et al. 2007; Huang
and Han 2010;Wijerathna and Liyanapathirana 2019), but
it is too time-consuming to be used as a routine tool as it
must scrutinize all possible combinations. Therefore, it is
necessary to develop amore effective technique to search for
the optimization design of GRPSF.
So far, the design optimization on geotechnical pro-

blems has not been well investigated. Some researchers
extended the optimization method of structure designs to
geotechnical designs including pile foundations (Leung
et al. 2010; Ghalesari et al. 2015) and spread footings
(Wang 2009), which adopted gradient-based methods
that can be implemented by intelligent optimization
algorithms. For piled composite foundations, the objec-
tive function was often defined by the total settlement
or differential settlement (Liang et al. 2006; Bouassida
and Carter 2014; Suro et al. 2016) and/or the construction
cost (Gary and Lucas 1987; Jelušič and Žlender 2018;
Narsavage 2019). It is noteworthy that the above-
mentioned gradient-based approach can be implemented
if the cost function and constraints are in explicit
formulations.
For GRPSF, it has been found that the post-

construction settlement often governs design, especially
when the GRPSF is constructed on soft soil ground (Liu
and Rowe 2015; Zhou et al. 2016). However, because the
settlement of GRPSF is calculated using semi-empirical
methods, it is hard to fit the settlement into an optimiz-
ation model that requires a completely defined, continuous
mathematic equation. Hence, a surrogate model (also
named ‘meta-model’) (Slem and Tomaso 2018) was used
as an effective alternative to determine the settlement in
reliability analysis and optimization (Schoefs et al. 2013;
Miro et al. 2014; Müthing et al. 2018; Zhao et al. 2019;
Phutthananon et al. 2020). Various surrogate models
(e.g. Polynomial Response Surface (PRS), Radial Basis
Function (RBF), Kriging, Artificial Neural Network
(ANN), and Support Vector Regression (SVR)) were
reported to be able to tackle these problems in an effective
and efficient manner (Bagheri et al. 2017; Goh et al. 2017;
Zhang et al. 2017, 2019). The aforementioned successful
applications justified the use of surrogate modeling to
optimize the design of GRPSF as presented in this work.
To optimize GRPSF design, this paper presents a

hybrid framework of Finite Element Method (FEM) and
surrogate modeling. Essentially, it is a sort of machine
learning approach to significantly reduce the demand for
computational effort. FEMwas used to generate a sample
pool with limited data, while the surrogate model, which
was implemented using an improved Black Hole-Genetic
Algorithm (BH-GA) in this study, was used to derive the
outcome of different design configurations and then
optimize the design of GRPSF by selecting the optimal
parameters. For optimization purposes, the construction
cost was defined as objective function and GRPSF design
parameters (e.g. pile length lp, pile cap size a, pile spacing
s, pile diameter d, pile cap thickness h, and the number
of geogrid layers k) were variables in the optimization
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process. The design constraints used in this paper were
determined based on Technical code for composite
foundation of China (MHURC 2012). After laying out
the framework including the mathematical formulation
and computational implementation procedure of the
Kriging surrogate model and Black Hole-Genetic
Algorithm, two case histories with field monitoring data
were selected to validate the proposed framework.

2. MATHEMATICAL MODEL

2.1. Components of GRPSF

GRPSF is usually constituted of vertically installed piles
(or columns), and horizontally installed cushion and/or
geosynthetics, which are used to improve ground bearing
capacity and minimize the differential ground settlement.
Piles are used to transfer surcharge to competent soils
(surrounding and/or underlying soils). Cushion and/or
geosynthetics are used to facilitate distribution of
surcharge between piles and soils with membrane
effect and soil arching effect. The construction cost of
GRPSF is substantially comprised of the material cost
of piles and geosynthetics as well as the corresponding
installation cost.

2.2. Design variables

Identification of all design variables is the first step
to establish the optimization model of GRPSF. In the
design practice of GRPSF, the height and width of an
embankment are usually pre-determined in the planning
phase based on traffic analysis. In addition, the size of
the cushion may also be a fixed parameter, prior to the
design of GRPSF, according to the classification of the
roadway. Therefore, the sizes of the embankment and
the cushion were not deemed as variables in this paper.
The to-be-determined parameters encompass pile length
lp, pile cap size a (diameter for circular cap; edge length for
square cap), pile spacing s (square arrangement in planar
layout), pile diameter d, pile cap thickness h, and the
number of geogrid layers k.

2.3. Cost function

The total construction cost of GRPSF, including installa-
tion and material costs, was defined in the objective
function, as expressed in Equation (1):

Minimize costQ xð Þ ¼ f lp; a; s; d; h; k
� � ð1Þ

It should be noted that the construction cost in
Equation (1) depends on the local price of materials and
the selection of construction methods. The design optim-
ization of GRPSF is essentially a search for the variable
vector x= (lp, a, s, d, h, k) that leads to the minimum
construction cost shown in Equation (1) and, at the same
time, meets constraints.

2.4. Constraints

The constraints of this optimization problem can be
categorized into three classes: site conditions, design

specifications, and construction requirements. Taking
the Pre-stressed High-Strength Concrete (PHC) pile as
an example, its maximum length depends on the depth of
the bearing stratum, and its diameter can only be of 0.3,
0.4, or 0.5 m due to constructability issues. Additionally,
the selection of design states, – that is, ultimate limit state
(ULS) (e.g. bearing capacity of foundation and reinforce-
ment) or serviceability limit state (SLS) (e.g. settlement,
differential settlement), would also lead to different
constraints in optimization. The constraints used in this
work are described in detail hereafter.
According to design and construction practice, the

reasonable range (xlower, xupper) for each design variable
was first determined. Because PHC piles would be used as
vertical supports of GRPSF in the cases presented in this
work, the design variables related to such piles will be
discussed and analyzed in this paper. Specifically, the pile
length varies at a minimum increment of 0.1 m, and its
diameter can be of 0.3, 0.4, or 0.5 m (MHURC 2012). In
addition, PHC piles are usually equipped with square
caps; the recommended area replacement ratio of piled
embankments ranges from 0.15 to 0.25; the recommended
thickness of pile cap ranges from 0.3 to 0.5 m; and the
minimum net span between neighboring pile caps is
0.5 m. The layout of piles is required to render a ratio of
pile spacing to pile diameter in a range from 5 to 8.
Geogrid could be used up to 3 layers.
Besides the aforementioned linear constraints, the opti-

mization of GRPSF is further subjected to a number
of non-linear constraints, as presented in design codes
(MHURC 2012), which include bearing capacity of
the subgrade, axial load capacity of piles, shear and
moment capacity of pile caps, and post-construction
settlement.
The requirement on the bearing capacity is expressed as:

pz þ pcz � faz ð2Þ
where pcz is the soil overburden stress; pz is the additional
stress induced by loading; faz is the allowable bearing
capacity.
Although Equation (2) was used to ensure soil stability

at the base of the embankment and at the tip of the pile,
they were treated differently in the calculation. At the tip
of the pile, the pile group and the soil between piles are
assumed to be a coherent block, acting as an equivalent
footing, and the bearing capacity is solely dependent on
the soil underlying the pile tip. In contrast, at the base of
the embankment the piles and the surrounding soil form a
composite foundation and its bearing capacity is defined
as a function of pile axial load capacity and soil bearing
capacity, which is indicated in Equation (3):

faz ¼ βpm
Ra

Ap
þ βs 1�mð Þfsk ð3Þ

whereRa is the ultimate bearing capacity of the single pile;
fsk is the capacity of surrounding soil; Ap is the cross-
section area of a pile; m is the area replacement ratio; and
βp and βs are the corrective factors for pile and surround-
ing soil, respectively.
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The requirement on bearing capacity of the individual
pile is presented in Equation (4)

Rs � Ra ð4Þ

where Rs is the axial load applied on the single pile. It is
noteworthy that the negative skin friction could contribute
to the vertical load if there is any.
The pile cap transfers the embankment loads to the pile

by resisting bending moment and shearing force (includ-
ing cross-sectional shear and punching shear), which shall
not exceed the limits:

M � MR ð5Þ

V � VR ð6Þ

whereMR and VR are the moment and shear resistance of
pile cap, respectively; M and V are the moment and shear
force on pile cap, respectively.
As required by service limit state (SLS), the post-

construction settlement of GRPSF, spost-construction, should
not exceed the allowable value [Δs], as expressed by

spost-construction � Δs½ � ð7Þ

Among the above non-linear constraints, the con-
straints related to the bearing capacity (i.e. GRPSF,
individual pile, and pile cap) can be calculated explicitly,
while the post-construction settlement is difficult to
calculate directly. Conventionally, the layer summation
method can be used to calculate the settlement when the
pile spacing is small, while in contrast theMindlin method
(Geddes 1966) is suitable when the pile spacing is large.
However, both methods were primarily developed for
building foundations so they cannot consider some factors
of GRPSF, such as layers of geosynthetic reinforcement.
The Finite Element Method (FEM) provides a powerful
tool to calculate the settlement of GRPSF; however,
exhausting all variable combinations to search for the
optimum is formidable in terms of computational time.
As an alternative, surrogate modeling with the assistance
of data from FEM was established using a regression
relationship between the settlement and design variables
to solve the post-construction settlement of GRPSF,
which can significantly reduce the demand for compu-
tational capacity.

3. SURROGATE MODELING OF
POST-CONSTRUCTION SETTLEMENT

Among the family of surrogate models, the Kriging model
was a stochastic approach, originally developed to deter-
mine mineral distribution and estimate reserves (Krige
1953), which has recently been extensively applied to
optimization problems and reliability analysis in multi-
disciplines such as aerospace, automobile, and civil engi-
neering (Hawchar et al. 2018). According to the Kriging
model, the response yˆ(x) at a point can be linearly
interpolated from the linear summation of the weighted

response of sampling points, which is written as:

ŷ xð Þ ¼
Xn
i¼1

λiyi ð8Þ

where λi is the ith weight coefficient, and yi is the response
of the ith sampling point.
Aiming at calculating the weight coefficient λ, the

unknown function Y(x) was assumed a stochastic process
(Sacks et al. 1989):

Y xð Þ ¼ F x; βð Þ þ Z xð Þ ¼ f T xð Þβ þ Z xð Þ ð9Þ
where F(x, β) defines the deterministic part of the regress-
ion model that characterizes an approximate global trend
over the whole design domain with a regression coefficient
β; Z(x) denotes the stochastic process with a mean value of
zero and a variance of σ2.
The spatial correlation function of avariable is given by

R xi; x′ið Þ ¼
Ym

i¼1
expð�θi xi � x′ij j2Þ ð10Þ

where R xi; x′ið Þ is the Gaussian correlation function
between two samples; θ is the undetermined parameter
that characterizes the spatial correlation between samples,
of which the length is equal to the dimension of the
variable x.
Using DACE toolbox in MATLAB (Lophaven et al.

2002), the parameters of the Kriging surrogate model as
defined in Equation (8) can be calculated. Different from
other surrogate models, both the predicted value and
variance are outputs when the Kriging model is used to
predict responses at arbitrary sites. The variance indicat-
ing the deviation of predicted values will be used in the
following sections.
Using the Kriging surrogate model established above,

the post-construction settlement of GRPSF design sol-
utions can be determined much more efficiently than
the FEM computations. The enormous computational
consumption in FEM modelings was remarkably reduced
for solving post-construction settlement corresponding to
the large amount of design alternatives (i.e. combinations
of design variables). Because the post-construction settle-
ment is limited in design of GRPSFas a critical constraint,
the cost optimization can be implemented efficiently with
all design constraints met in a straightforward way.

4. BH-GAOPTIMIZATION ALGORITHM

4.1. Black Hole (BH) algorithm

BH algorithm is a novel, nature-inspired metaheuristic
algorithm based on the black hole phenomenon and
originating from population-based algorithm Particle
Swarm Optimization (PSO) (Zhang et al. 2008). As
featured in other population-based algorithms, the candi-
date solutions to the problem are generated randomly in a
search space and the best candidate is defined as the black
hole in each iteration. The candidates in BH algorithm
can be regarded as the stars in the universe. All solutions
would move towards the best candidate in the search
space, which is analogous to the process of the black hole
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absorbing the stars. The BH algorithm (Zhang et al. 2008)
was originally proposed to introduce a new mechanism to
accelerate the convergence velocity of particle swarm
optimization (PSO), but was found insufficient without
considering the event horizon of the black hole and
destruction of stars.
Hatamlou (2013) improved the BH algorithm by

defining the updated formula of the star’s location and
the radius of the event horizon RBH respectively, as seen in
Equations (11) and (12). The distance of the candidate
closer than RBH would be sucked into the black hole, and
then a new candidate would be born to maintain the
population size. All the stars xi would move towards the
black hole xBH by applying Equations (11) and (12).

xi tþ 1ð Þ ¼ xi tð Þ þ rand 0; 1ð Þ � xBH � xi tð Þð Þ;
i ¼ 1; . . . ;N

ð11Þ

RBH ¼ fBHPN
i¼1 fi

ð12Þ

where xi(t) and xi(t + 1) denote the positions of the ith star
at the tth and (t+1)th iteration, respectively; xBH denotes
the position of the black hole in the search space; rand
(0,1) defines a random number between 0 and 1; N
corresponds to the number of stars; fi and fBH are the
fitness values of ith star and the black hole, respectively.

4.2. BH-GA algorithm

As a simplification of PSO, the BH algorithm exhibits
high computational efficiency for some simple cases but
may not be effective for cases with multi-modal optimiz-
ation or involving discrete variables (Piotrowski et al.
2014). To improve the BH algorithm, learning factors r1
and r2 that are between zero and one were introduced into
the location update formula of stars under the absorption
of the black hole. Accordingly, Equation (12) can be
rewritten as:

xi tþ 1ð Þ ¼ r1xi tð Þ þ r2rand 0; 1ð Þ � xBH � xi tð Þð Þ;
i ¼ 1; . . . ;N

ð13Þ
Additionally, Genetic Algorithm (GA) (Michalewicz

and Janikow 1991) was incorporated with BH to achieve a
novel BH-GA algorithm with an enhanced search capa-
bility on both local and global space. Specifically, the
selection and crossover operations featured in GA were
introduced into BH-GA to improve the convergence
efficiency and accommodate problems with either
continuous or discrete variables. The BH-GA algorithm
was executed in the following steps:

(a) Initialize the values of r1, r2 and the position
of population xi within the allowable range
(xlower, xupper).

(b) Locate the position of the best-fit individual xbest,t,
which will be identified as the black hole in the tth
iteration; determine the radius of the event horizon

RBH of the black hole per Equation (12); update the
positions of the whole population per Equation (13).
If the distance between one individual and the black
hole is less than RBH, the individual will be absorbed
by the black hole and a new particle will be generated
in the variable space; if one individual is found with
better fit than that of xbest,t on its route moving
towards the black hole, it will be identified as the
black hole in the (t+1)th iteration, – that is xbest,t+1.

(c) Evaluate the fit of each individual in the tth iteration,
and select and crossover candidates by the ranking of
fit evaluation to generate the evolved individual in
the (t+1)th iteration per Equation (14). Only the top
97% individuals are picked out to generate the next
generation, and N � 3% new samples are generated
to maintain the size of population.

xtþ1
1 ¼ r3xt1 þ 1� r3ð Þxt2

xtþ1
2 ¼ r3xt2 þ 1� r3ð Þxt1 ð14Þ

where r3 is the crossover value defined by rand (0,1).
(d ) Repeat steps b-c until at least one of the following

convergence criteria is met: the terminative number
of iterations is reached, or the black hole fails to
update for the designated number of iterations.

4.3. Examination using benchmark functions

Benchmark functions (unimodal: F1, F2, F3 and F4; and
multimodal: F5, F6, and F7) selected from Suganthan
et al. (2005) were used to examine the optimization
capability of the presented BH-GA algorithm. The
function expressions, definition range, and other relevant
information for these benchmark functions are presented
in Table 11. Note that the dimension of the variable vector
(D=10) was used for all benchmark functions. If the
benchmark function has continuous variables, the mini-
mum variation of variables was set equal to the default
computational precision (10−16). If the benchmark test
function possesses discrete variables, the minimum vari-
ation of variables was set to 0.1. Each benchmark function
was solved using four optimization methods/algorithms
including BH-GA, BH, GA and PSO to compare their
performance and applicability. For all algorithms, the
population number N was initialized to 200, and the
terminated number of iterations was set to 300.
The computational results of the seven benchmark

functions using four optimization algorithms are shown
in Table 12. Specifically, BH-GA algorithm exhibited its
effectiveness for both discrete-variable and continuous-
variable optimizations. In contrast, GA manifested an
excellent performance in continuous-variable optimization,
in which the evolution of the population depended largely
on the crossover operation. With the same underlying
fundamentals, PSO performed less efficiently than BH for
most functions, which could be attributed to the excessive
emphasis on the global exploration capability in PSO.
To evaluate the performance of the algorithm, the

evolution of fitness over the generation for the seven
benchmark functions is shown in Figure 10. The fastest
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convergence speed can be observed in the case using
BH-GA, compared with other algorithms (BH, GA and
PSO) for both continuous- and discrete-variable problems.
It is noteworthy that all the presented algorithms perform
less efficiently in optimizing discrete-variable problems
than in optimizing continuous-variable problems. It is
reasonably recognized that the discrete-variable search
needs much more time than the continuous-variable
search when solving the same benchmark function due to
less local information included in a discrete-variable
problem. The competitiveness of BH-GA in dealing with
discrete-variable problems lies in the introduction of the
crossover operation that improves exploitation and explora-
tion efficiency substantially.

4.4. Examination using classical engineering problems

To further investigate the performance of the BH-GA,
two reported optimization problems of engineering
application were applied in order to examine the improved
algorithm BH-GA. Details for the two optimization
problems can be found in Figure 11 and Equations (16)
and (17). The first problem is the cost optimization of a
pressure vessel (Sandgren 1990), aiming at minimizing the
fabrication cost including material, forming, and welding.
Another structural optimization problem was to minimize
the weight of a cantilever beam (Chickermane and Gea
1996). The design variables included the dimensions for
the outer shape of five components (see Figure 11b).
The presented BH-GA algorithm as well as GA,

BH and PSO were applied respectively to search the
optimal design variables for the two structural optimiz-
ation problems. The optimization results of the above four
algorithms as well as the one using MVO (Multi-Verse
Optimizer) reported in Seyedali et al. (2015) are presented
in Tables 13 and 14. For the pressure vessel, it was found
that design variables optimized by BH-GA lead to the
minimum cost compared with the other four algorithms.
Additionally, the minimum weight of the cantilever beam
was also provided by BH-GA. Hence, in terms of effec-
tiveness and efficiency, the applicability of the presented
BH-GA algorithm to optimization problems in engineer-
ing applications with complex constraints was scrutinized.

5. PROCEDURE OF OPTIMIZATION
DESIGN

Optimization of GRPSF design can be carried out by
incorporating the aforementioned Kriging surrogate
modeling and BH-GA search algorithm in the steps
described below (see Figure 1).
Step 1: Determine the bounds (xlower, xupper) of design

variables x= (lp, a, s, d, h, k) in the specific engineering
case, and define Equation (1). Specifically, based on
Chinese codes and construction experience, the lower
bounds of design variables shall be xlower = (10, 0.8, 1.5,
0.3, 0.3, 0), and the upper bound xupper could be
designated and justified using semi-empirical methods
as stated previously in Section 2.3.

Step 2: Set the values of parameters in constraints, – for
example, the bearing capacity of native soils fsk, the skin
friction of pile embedded in various soil layers, the limit of
post-construction settlement Δs½ �, and so on.
Step 3: Complete surrogate modeling aiming at calcu-

lating the GRPSF settlement: generate the sampling of
design variables (i.e. training sample pool) using appro-
priate sampling methods (e.g. uniform design, orthogonal
design, and the Latin hypercube method); determine the
response (post-construction settlement) of each sample
point using numerical modeling (i.e. FEM); establish the
Kriging surrogate model based on the training samples;
set the tolerance and examine the surrogate model using
extra sample points (i.e. prediction samples), which is a
process to validate the surrogate model by comparing the
predicted response from the surrogate model with the cal-
culated response from FEM; add the prediction samples
into the training sample pool and repeat the above
operations until the predicted–calculated difference is
less than the tolerance.
Step 4: Search the minimum construction cost

(Equation (1)) using the BH-GA algorithm with con-
straints treated by a penalty function method, in which the
settlement of GRPSF can be determined using the

Determine
•    Design variables x = (Ip, a, s, d, h, k)
•    Bounds of variables (xlower, xupper) 
•    Cost function Q(x)

Specify 
•    Soil parameters 
•    Soil-structure interface strength
•    Limit of post-construction settlement [Δs]

Calculate 
•    Post-contruction settlement Spost-construction
     using finite element numerical modeling

Generate 
•    N sampling points xi within bounds (xlower, xupper)
     using uniform design sampling method

Establish 
•    Surrogate model for determining Spost-construction
     using Kriging method with accuracy examined 

Search 
•    The minimum cost Q(x)min using integrated
      BH-GA algorithm with Spost-construction (xi)
      predicted in surrounding modeling

Output 
•    The optimal design variables xbest
•    Spost-construction (xi) of all samples
•    The minimum cost Q(x)min
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Figure 1. Flowchart for optimization design of GRPSF
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surrogate model in the preceding step. The cost Q of the
sample located in the infeasible field is attributed with
the value of 1 × 105 USD/m, which can be identified as
impractical fitness for construction cost of GRPSF cases.
Step 5: Terminate the search if the iteration limit is

reached or the search converges, and output the xbest =
(lp, a, s, d, h, k) and corresponding construction costQmin.
Two case histories have been selected to validate the

proposed framework to optimize GRPSF design, which
will be discussed thoroughly in this section.

6. CASE STUDY

6.1. Case history A: PHC pile-supported GRPSF

6.1.1. Description
The GRPSF of K13+ 320 section of the XING-SHAN
highway project in Guangdong, China (TPDI 2016) was
redesigned as an example to demonstrate the effectiveness
of the presented design optimization framework. In
this case, the native subgrade was profiled by a 14.4 m-
thickness soft soil layer underlying a 3 m-thickness

deposit soil layer. The water table was located 1.3 m
below the ground surface. As shown in Figure 2, the
embankment was 7 m in height and had a crest width of
26 m, which was bounded by two sides 1 : 1.5 slopes
(vertical: horizontal). Without any improvement, the
subgrade soil would settle 0.7 m after the completion of
the 7 m embankment. Hence, GRPSF was selected to
improve the subgrade to reduce excessive settlement. The
original design and soil layer information are schemati-
cally illustrated in Figure 3. Site investigation, mainly
consisting of borehole sampling and Standard Penetration
Test (SPT), provided soil properties of each soil layer,
which are listed in Table 1.

6.1.2. Finite Element modeling parameters
Constitutive models and their parameters used to simulate
GRPSF were determined from either in situ and labora-
tory tests (TPDI 2016) or relevant literature (Wu et al.
2019), as shown in Table 2.
Modified Cam Clay (MCC) was used to model the soft

clay and the relevant parameters were obtained from
one-dimensional consolidation tests (κ, λ, and e1) and
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Figure 2. Cross-sectional schematic of GRPSF for case history A
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Figure 3. Schematic of mesh and grid of case history A: (a) section C-C; and (b) top view
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consolidated undrained (CU) triaxial compression tests
(stress ratio M ). The remaining soil layers, embankment
backfill, and sand cushion were modeled as a
Mohr-Coulomb (MC) model with zero dilation angle.
The PHC pile was idealized as homogeneous and linear
elastic material, and the geogrid was assumed as linear
elastic-perfect plastic (EP) material with a rupture
strength of 80 kN/m at a strain of 13%.

6.1.3. Uniform design of sampling space
According to soil profile and properties in Table 2 as well
as constraints previously given, the design variables with
their variation range and increments used in the discrete-
variable search for the case are listed in Table 3. The

determination of the variable range will be discussed in
detail hereafter.

(a) Pile length, lp: Design practice experience suggests
that using PHC pile with a length greater than 10 m
in GRPSF tends to result in the most economical
solution compared with other alternatives, such as
soil-cemented pile or auger cast concrete pile.
Meanwhile, soil profile indicates that PHC pile with
length greater than 25.5 m will render the pile tip
in a competent sand-gravel layer (dense sand-2),
which will lead to negligible settlement of GRPSF.
Thus, lp is limited between 10 and 26.5 m.

(b) Pile diameter, d: The commonly used diameters for
PHC pile in practice are 0.3, 0.4, or 0.5 m, as

Table 1. Physical and mechanical characteristics of soil layers

Soil layer D (m) LL (%) PL (%) PI (%) LI (%) w (%) ρ (g/cm3) Sr (%) e cc Nspt

Silty sand-1 0–3 — — — — — 20 — 0.70 — 12
Soft clay 3–17.4 51.2 28.3 23.0 0.79 46.1 16 100 1.65 1.85 3
Silty sand-2 17.4–19.6 — — — — — 19 — 0.9 — 9
Dense sand-1 19.6–21.1 — — — — — 18 — 0.60 — —

Silty clay 21.1–28.6 33.2 23.5 9.7 0.42 27.6 18 90 0.83 0.50 37
Highly weathered granite 28.6–37.2 33.8 21 12.8 0.29 24.7 19 92 0.73 0.37 40
Highly weathered granite 37.2–47.4 — — — — — 20 — 0.70 — 57
Embankment backfill 7 — — — — — 18 — — — —

Notes: D: depth of soil layer; LL: liquid limit; PL: plastic limit; PI: plasticity index; LI: liquid index; w: moisture content; ρ: density; Sr: degree of
saturation; e: void ratio; cc: coefficient of compressibility; Nspt: SPT blow counts.

Table 2. Physical and mechanical parameters for FE modeling

Material Model E (MPa) ν c (kPa) ϕ (°) λ κ M e1 kp (cm/s)

Subsurface soils
Silty sand-1 MC 11.1 0.33 6 34 — — — — 2.8× 10−3

Soft clay MCC — — — — 0.09 0.013 0.43 1.31 4.0× 10−7

Silty sand-2 MC 18.6 0.33 5 32 — — — — 1.2× 10−3

Dense sand MC 18.6 0.3 2 38 — — — — 1.5× 10−5

Silty clay MC 4.5 0.3 16 18 — — — — 6.0× 10−5

Completely weathered granite MC 20 0.3 25 25 — — — — 2.0× 10−3

Highly weathered granite MC 23 0.3 28 28 — — — — 7.0× 10−3

Backfill material
Embankment MC 20 0.33 20 28 — — — — —

Cushion MC 50 0.33 2 36 — — — — —

Basal reinforcements
Geogrid EP Trupture = 80 kN/m at strain of 13%

Piling
Pile E 30 000 0.2 — — — — — — —

Notes: E: Young’s modulus; ν: Poisson’s ratio; c: cohesion; ϕ: friction angle; λ: gradient of virgin consolidation line; κ: gradient of swelling line;M: stress
ratio; e1: intercept; kp: permeability coefficient; Trupture: rupture strength of geogrid.

Table 3. Bounds and increments for design variables

Design variable lp, (m) a (m) s (m) d (m) h (m) k

Lower and upper bounds (10, 26.1) (1, 1.7) (1.8, 2.9) (0.3, 0.5) (0.3, 0.5) (1, 3)
Increment 0.7 0.1 0.1 0.1 0.1 1

Notes: lp: pile length; a: pile cap size; s: pile spacing; d: pile diameter; h: pile cap thickness; k: the number of geogrid layers.
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suggested in the design codes of PHC piles
(MHURC 2012).

(c) Pile spacing, s: The distance between neighboring
piles is recommended to be 5–8 times the pile
diameter in Chinese code Technical code for
composite foundation (MHURC 2012), which is
used as the lower and the upper bounds of pile
spacing, respectively.

(d ) The number of geogrid layers, k: The use of
geogrid is highly recommended as horizontal
reinforcement and is limited to three layers for
GRPSF (MHURC 2012).

(e) The thickness of pile cap, h: Shear and moment
bearing capacity requirements of the pile cap,
defined in Equations (4) and (5), govern the
thickness; according to the recommendations
regarding the application of PHC piles to GRPSF
in design codes (MHURC 2012), the thickness of
pile cap could be 0.3, 0.4, or 0.5 m.

( f ) Pile cap size, a: The replacement ratio, defined as the
ratio of the area of a pile cap to its tributary area,
varies between 0.15 and 0.45.

Samples were evenly selected from the design space to
achieve as uniform a distribution as possible, considering
the boundary and increment of each variable. (Note: one
design configuration constitutes one sample). In total,
twenty-five samples were generated, which are listed
in Table 4. Note that the last sample (i.e. Sample 25)
is the real case that contains all as-built parameters and
will be used to assess the effectiveness of the surrogate
model.

6.1.4. Response of numerical modeling
Numerical modeling of the case was carried out in
ABAQUS using the parameters of each sampling indi-
cated in Table 4. The schematic of this numerical model is
illustrated in Figure 3. To save computational time, the
dimension in the longitudinal direction of the embank-
ment (Y direction in the model) was equal to one pile
spacing. The transverse dimension (X direction in the
model) was set to be three times the embankment width to
eliminate the boundary effect, as shown in Figure 3.
The model was extended to the top of a slightly

weathered granite layer. According to the in situ investi-
gation, the slightly weathered granite layer had an rock
quality designation greater than 90%; therefore, the model
assumed a fixed, impermeable bottom boundary.
PHC piles with hollow sections were converted into

equivalent solid sections based on the principle of equal
compressive stiffness EA, where E is the elastic modulus
and A is the cross-sectional area. Embankment backfill,
PHC pile, and foundation soils were modeled using C3D8
elements, while the geogrid embedded in the sand cushion
was modeled using truss element T3D2. Additionally,
no slip between the geogrid and the sand cushion was
allowed. The pile–soil interaction was modeled by
Coulomb’s frictional interface element: relative displace-
ment was not allowed if shear stress was less than shear
strength and would be allowed if shear stress exceeded
the shear strength that was proportional to the normal
pressure.
Since it is a highly non-linear problem involving large

deformations, the unsymmetrical matrix quasi-Newton
technique was employed to accelerate the convergence.
The staged construction process of the embankment was
simulated by constructing embankment by lifts. The
modeling consisted of the following steps: (a) the geostatic
stress of the strata was initiated; (b) the incurred displace-
ment was zeroed out once the in situ field was established;
(c) geogrid, sand cushion, and PHC piles were installed;
(d) the embankment was constructed in lifts; and
(e) consolidation was allowed for the first half-year
under embankment load and then the following thirty
years under an additional surcharge of 15 kPa. The simul-
ation terminated at 30 years in service since the degree of
consolidation was nearly 100% and the settlement at the
base of the embankment became less than 0.1 mm/year.
Over a hundred thousand nodes were included in the mesh,
and it took around five hours to complete the three-
dimensional analysis for each model using parallel accel-
eration with an 8-core processor (Intel i7-7700 4.0GHz).
Themodeling effectivenesswas scrutinized by comparing

the calculated and measured settlements of the embank-
ment for the real case (i.e. Sample 25 in Table 4). A
displacement plate was installed on the ground surface at
the center of cushion bottom (point B in Figure 3)
to monitor the settlement of GRPSF over time. The time
histories of the calculated and measured settlements and
backfilling height are plotted in Figure 4. A good agree-
ment between the two settlement histories was observed as
shown in Figure 4. This comparisonvalidated the adequacy
of the GRPSF model in predicting the settlement.

Table 4. Samples generated using uniform design sampling
including original design solution

Sample lp (m) a (m) s (m) d (m) h (m) k

1# 10.0 1.0 2.1 0.4 0.4 3
2# 10.8 1.1 2.4 0.5 0.5 2
3# 11.6 1.2 2.8 0.3 0.4 1
4# 12.4 1.3 1.9 0.5 0.5 1
5# 13.2 1.4 2.2 0.3 0.4 3
6# 14.0 1.5 2.6 0.4 0.5 2
7# 14.8 1.6 2.9 0.3 0.4 1
8# 15.6 1.7 2.0 0.4 0.5 1
9# 16.4 1.0 2.4 0.5 0.3 3
10# 17.2 1.1 2.7 0.4 0.5 2
11# 18.0 1.2 1.8 0.5 0.3 2
12# 18.8 1.3 2.2 0.3 0.5 1
13# 19.6 1.4 2.5 0.5 0.3 3
14# 20.4 1.5 2.9 0.3 0.5 2
15# 21.2 1.6 2.0 0.4 0.3 2
16# 22.0 1.7 2.3 0.3 0.5 1
17# 22.8 1.0 2.7 0.4 0.3 3
18# 23.6 1.1 1.8 0.5 0.4 3
19# 24.4 1.2 2.1 0.4 0.3 2
20# 25.2 1.3 2.5 0.5 0.4 1
21# 26.0 1.4 2.8 0.3 0.3 3
22# 26.8 1.5 1.9 0.5 0.4 3
23# 27.6 1.6 2.3 0.3 0.3 2
24# 28.4 1.7 2.6 0.4 0.4 1
25# 24.0 1.5 2.5 0.3 0.3 2
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For all other samples, the settlements of GRPSF at the
base (i.e. point B as shown in Figure 3) during construc-
tion and services are presented in Figure 5. Intuitively, the
post-construction settlement at the crest is more critical to
the serviceability of the embankment, which is represented
by the displacement at point A. The devolvement of the
settlement at point A is depicted in Figure 6.

6.1.5. Response of surrogate model
Numerical modeling was used to calculate the post-
construction settlement of GRPSF for each sample listed
in Table 4. Settlements obtained from numerical modeling
for the thirteen samples are presented in Table 5. Samples
and their responses in Table 5, except for the 2nd, 9th,
12th, and 21st samples, were used to train the surrogate
model based on the Kriging method. Thereafter, the
surrogate model was applied to predict the responses for
the 2nd, 9th, 12th, and 21st samples. The effectiveness
of the surrogate model was validated by the comparison
between the predicted and the numerical modeling
responses. As shown in Table 5, the maximum deviation
was 1.27%, which was found in the comparison of the

0
0 50 100 150 200 250

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Se
ttl

em
en

t (
m

)

Time (day)

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
ei

gh
t (

m
)

In-situ monitored
Calculated in FEM
Filling height

Figure 4. Calculated and measured settlement development of
GRPSF during embankment filling

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.4

0.3

0.2

0.1

Time (year)

1# 2# 3# 4# 5# 6#
7# 8# 9# 10# 11# 12#
13# 14# 15# 16# 17# 18#
19# 20# 21# 22# 23# 24#
25#

8

6

4

2

0

Filling height

Fi
llin

g 
he

ig
ht

 (m
)

Se
ttl

em
en

t (
m

)

(b)

0 5 10 15 20 25 30
0

0.4

0.3

0.2

0.1

Time (year)

1# 2# 3# 4# 5# 6#
7# 8# 9# 10# 11# 12#
13# 14# 15# 16# 17# 18#
19# 20# 21# 22# 23# 24#
25#

Se
ttl

em
en

t (
m

)

8

6

4

2

0

Filling height

Fi
llin

g 
he

ig
ht

 (m
)

Closeup view in subfigure (a) 

Figure 5. Settlement history of GRPSF samples: (a) construction
stage; and (b) service stage

0 5 10 15 20 25 30

1# 2# 3# 4# 5# 6#

7# 8# 9# 10# 11# 12#

13# 14# 15# 16# 17# 18#

19# 20# 21# 22# 23# 24#

25#

0.5

0.4

0.3

0.2

0.1

8.0

7.8

7.6

7.4

7.2

7.0

6.8

6.6

Filling height

Time (year)

Fi
llin

g 
he

ig
ht

 (m
)

spost-construction of sample 23#

Po
st

-c
on

st
ru

ct
io

n 
se

ttl
em

en
t (

m
)
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Table 5. Post-construction settlement response in numerical
modeling

Sample Calculated
(m)

Predicted
(m)

Relative error
(%)

Type

1# 0.1147 0.1147 0.00 Trained
2# 0.1091 0.1095 −0.39 Tested
3# 0.1131 0.1131 0.00 Trained
4# 0.1013 0.1013 0.00 Trained
5# 0.1180 0.1180 0.00 Trained
6# 0.1168 0.1168 0.00 Trained
7# 0.1176 0.1176 0.00 Trained
8# 0.0976 0.0976 0.00 Trained
9# 0.1081 0.1082 −0.09 Tested
10# 0.1169 0.1169 0.00 Trained
11# 0.0859 0.0859 0.00 Trained
12# 0.0929 0.0927 0.24 Tested
13# 0.0910 0.0910 0.00 Trained
14# 0.1000 0.1000 0.00 Trained
15# 0.0890 0.0890 0.00 Trained
16# 0.0903 0.0903 0.00 Trained
17# 0.1000 0.1000 0.00 Trained
18# 0.0651 0.0651 0.00 Trained
19# 0.0683 0.0683 0.00 Trained
20# 0.0637 0.0637 0.00 Trained
21# 0.1072 0.1058 1.27 Tested
22# 0.0387 0.0387 0.00 Trained
23# 0.0562 0.0562 0.00 Trained
24# 0.0350 0.0350 0.00 Trained
25# 0.1068 0.1068 0.00 Trained
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21st sample. Such a difference in general is acceptable in
engineering practice. It is noteworthy that all 25 samples
were used as training samples when the surrogate model
was applied to calculate the post-construction settlement
in the following optimization process.

6.1.6. Optimized design solution
The construction cost of the GRPSF in case history A (i.e.
Sample 25) was rewritten by

Q xð Þ ¼ c1Sgeogridk þ c2Vpile-cap þ c3Vpile þ c4l
� �Þ � n

ð15Þ
in which c1 denotes the price of geogrid per unit square
meter; c2 denotes the price of pile cap per unit cubic meter
(assuming the same unit price for both cast-in-place and
prefabricated pile caps); c3 denotes the price of PHC pile
per unit cubic meter (excluding the hollow space); c4
denotes the price of pile connections per unit pile length
(when the PHC pile is longer than 10 m, connections such
as flange plates are needed); Sgeogrid denotes the area of
geogrid per layer; Vpile-cap denotes the volume of each pile
cap; Vpile denotes the volume of each pile (without the
hollow volume); lp denotes pile length; n denotes the
number of piles. Specifically, the values for price para-
meters in Equation (16) were assigned according to the
construction budget guidelines in China (MCHEQS
2018) as follows: c1 = 1.69 USD/m2; c2 = 57.52 USD/m3;
c3 = 161.10 USD/m3; and c4 = 1.77 USD/m.
According to the design code (MHURC 2012), the

corrective factors βp for pile and βs for surrounding soil
were set to 1.0 and 0.9, respectively. Then the optimization
search in the sample space was performed using the
aforementioned BH-GA algorithm, in which the response
(post-construction settlement) for each sample was calcu-
lated using the Kriging surrogate model. The optimized
design solution, – that is, the optimal values for design
variables and the corresponding settlement response, as
well as the original design solution is presented in Table 6.
Because the allowable settlement is 100 mm (MTof China
2015), it is found that the optimized design solution
succeeded in meeting the criteria (i.e. 92.9 mm) by using
shorter pile length, smaller pile spacing, and single
geogrid layer. In contrast, the original design solution
failed to satisfy the settlement-based design demands even
though it provided lower construction costs.

6.2. Case history B: soil-cement column-supported
embankment

6.2.1. Description
Case history B was based on a trial embankment
constructed in Saga, Japan (Igaya et al. 2011). The
embankment had a height of 6.5 m and a crest width of

12 m. The subgrade was improved by 1.2 m diameter
soil-cement columns that were installed in a square
pattern with center-to-center spacing of 1.9 m. The
schematic of this case history is shown in Figure 7,
noting that no geosynthetic basal reinforcement was used
(Chai et al. 2015). However, because the design variable k
(the number of geogrid layers) could be assigned avalue of
zero, this case was considered as an effective GRPSF
example in demonstrating the application of the presented
optimization framework.
Instrumentation was installed to monitor the defor-

mation and pore water pressure. The acquired monitoring
data at point S01 at the embankment crest was selected as
the governing settlement indicator of GRPSF. Numerical
modeling of this case history was carried out to calculate
the deformation. It should be noted that the numerical
model (ABAQUS) developed in this work was consistent
with, but differed slightly in the mesh from, the 3D-2
model in Chai et al. (2015). Additionally, the post-
construction settlement limit for this case was 0.3 m.

6.2.2. Sampling using uniform design
Because the soil-cement column-supported GRPSF in
case history B did not use geogrid and pile cap, the design
variables considered in the optimization analysis were pile
diameter d, pile length lp, and pile space s. The diameter of
soil-cement column and the pile spacing are dependent on
the construction technique, but their lower bounds are
specified in design codes (MHURC 2012). The pile tip
should be seated in the stiff clay layer. The variation and
increment of the variables are presented in Table 7.

6.2.3. Numerical and surrogate modeling
Before analyzing the post-construction settlement at the
crest of the embankment, the accuracy of FEM was

Table 6. Comparison between optimized and original design solutions for GRPSF

Design solution lp (m) a (m) s (m) d (m) h (m) k (m) Cost (USD/m) spost-construction (m) spost-construction-FEM (m)

Optimized 19.6 1.4 2.7 0.3 0.3 1 1706.9 0.0929 0.0943
Original 24 1.5 2.5 0.3 0.3 2 2805.4 0.1068 0.1068
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Figure 7. Schematic of case history B (redraw from Igaya et al.
(2011))
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validated in this paper as shown in Figure 8. The case
history (the original design solution) was numerically
modeled using ABAQUS in a similar procedure used for
case history A. The settlement of point S02 was monitored
in numerical simulation and compared with in situ
measured results (Chai et al. 2015) (as seen in Figure 8).
The good agreement between the numerically calculated
and in situ measured results validated the effectiveness
and applicability of the numerical modeling in calculating
the settlement of the designed embankment.
For all samples, the settlements of case B at the

embankment base (i.e. point S01 as shown in Figure 7)
during construction and services are presented in
Figure 9. The Kriging method was also used to establish

the surrogate model aiming at predicting the post-
construction settlement based on training and tested
samples as seen in Table 8. It is noted that the settlement
histories of samples 1, 3, 4, and 7 were not available as
FEM calculations were not convergent due to excessively

Table 7. Bounds and intervals for design variables of case
history B

Design variable d (m) lp (m) s (m)

Lower and upper bounds (0.5, 1.6) (4, 10.9) (1.5, 2.9)
Increment 0.1 0.3 0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Se
ttl

em
en

t (
m

)

0 100 200 300 400 500
Time (year)

the completion of filling (109-day)

Calculated in Chai et al. (2015)
Calculated in this work
In-situ monitored

Filling height

0

1

2

3

4

5

6

7

H
ei

gh
t (

m
)

Figure 8. Time history of settlement at point S02 calculated using
different methods

0 100 200 300 400 500

4

3

2

1

0

Time (day)

2# 5# 6# 10# 8# 9#
11# 12# 13# 14# 15# 16#
17# 18# 19# 20# 21# 22#
23# 24# 25#

Note: the settlement histories of samples 1#, 3#, 4# and 7# were not
available as FEM calculations were not convergent due to excessively
large deformation.

6

4

2

0

Filling height

Fi
llin

g 
he

ig
ht

 (m
)

Se
ttl

em
en

t (
m

)

Figure 9. Time histories of settlement for samples of design
solution

Table 8. Comparison of settlement between numerical and
surrogate modelings

Sample Calculated
(m)

Predicted
(m)

Relative error
(%)

Type

1# — — — —

2# 1.2237 1.2237 0.00 Trained
3# — — — —

4# — — — —

5# 2.1355 2.1355 0.00 Trained
6# 0.9421 0.9421 0.00 Trained
7# — — — —

8# 1.6108 1.6108 0.00 Trained
9# 0.5119 0.5119 0.00 Trained
10# 0.7286 0.7286 0.00 Trained
11# 0.5504 0.5504 0.00 Trained
12# 1.6639 1.6639 0.00 Trained
13# 0.324 0.3240 0.00 Trained
14# 0.6699 0.6699 0.00 Trained
15# 0.3498 0.3496 0.07 Tested
16# 1.444 1.4440 0.00 Trained
17# 0.1951 0.1951 0.00 Trained
18# 0.1397 0.1397 0.00 Trained
19# 0.2226 0.2226 0.00 Trained
20# 0.1355 0.1355 0.00 Trained
21# 0.1138 0.1138 0.00 Trained
22# 0.0818 0.0818 0.00 Trained
23# 0.2633 0.2584 1.86 Tested
24# 0.1167 0.1167 0.00 Trained
25# 0.2194 0.2194 0.00 Trained

Table 9. Sampling of design variables using uniform design

Sample lp (m) s (m) d (m)

1# 4 1.7 1
2# 4.3 2.1 1.5
3# 4.6 2.5 0.8
4# 4.9 2.9 1.4
5# 5.2 1.7 0.7
6# 5.5 2.1 1.2
7# 5.8 2.5 0.5
8# 6.1 2.9 1.1
9# 6.4 1.7 1.6
10# 6.7 2.1 0.9
11# 7 2.5 1.5
12# 7.3 2.9 0.8
13# 7.6 1.5 1.3
14# 7.9 1.9 0.6
15# 8.2 2.3 1.2
16# 8.5 2.7 0.5
17# 8.8 1.5 1
18# 9.1 1.9 1.6
19# 9.4 2.3 0.9
20# 9.7 2.7 1.4
21# 10 1.5 0.7
22# 10.3 1.9 1.3
23# 10.6 2.3 0.6
24# 10.9 2.7 1.1
25# 8.5 1.9 1.2
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large deformation. The predicted settlement results using
the surrogate model were compared with the calculated
settlement results in numerical modeling. Table 8 indicates
that the maximum error is 1.864%, and higher prediction
accuracy was found for the sample with a smaller
settlement. The prediction capability of this settlement
surrogate model was adequately verified.
Similar to the procedure used for case history A, evenly

distributed samples were first generated for the surrogate
model. The sample pool as seen in Table 9 includes 24
generated samples (the 1st–24th samples) and the as-built
one (the 25th sample).

6.2.4. Optimal results
The construction cost of the stabilized foundation for
case history B was calculated based on the optimized
design solution obtained in the above-discussed pro-
cedure, as shown in Table 10. The corrective factors for
pile βp and surrounding soil βs were set to 1.0 and 0.9,
respectively. It is noted that the price of cement-soil
column per unit length would increase, typically used in
this calculation, by multiplying 1.05(d−0.5)/0.05 if the pile
diameter d is greater than 0.5 m. It can be found that the
construction cost of GRPSF was reduced to 379.5 USD
per unit length of the embankment in the optimized
design of this case. Specifically, the optimized design
solution adopted the slightly reduced pile diameter
and moderately increased pile length and pile spacing;
and the post-construction settlement of the foundation
was remarkably reduced to a quarter of the original
design.

7. CONCLUSIONS

This work developed a novel optimization framework
for Geogrid-Reinforced Pile-Supported Foundation
(GRPSF) that is commonly used in ground improvement.
An optimization model was established by defining the
objective function in terms of construction cost and apply-
ing constraints on the basis of requirements on bearing
capacity of soil and piles, shear and moment resistance of
pile cap, and post-construction settlement of GRPSF. The
Kriging method-based surrogate model was used in
conjunction with FEM to calculate the GRPSF settle-
ment. An integrated BH-GA algorithm was proposed
to implement the global search of the optimized design
solution with minimum construction cost. The major
conclusions that can be drawn from this study are as
follows:

(a) A cost optimization design framework of GRPSF
was successfully developed, which could account for

post-construction settlement, and various discrete
design variables including pile length lp, pile cap size
a, pile spacing s, pile diameter d, pile cap thickness h,
and the number of geogrid layers k.

(b) The integration of the Kriging method-based
surrogate model and FEM computations was
developed to implement an efficient and effective
determination of post-construction settlement of
GRPSF using a remarkably reduced number of
design alternatives, – that is combinations of design
variables.

(c) By introducing the selection and crossover
operation of GA into the BH algorithm, the
integrated BH-GA algorithm was applicable
to a global search for optimization problems
with both continuous and discrete variables,
which can be used to solve many geotechnical
problems in addition to the discussed GRPSF
applications.

The presented framework is expected to provide a
protocol of design optimization for GRPSF in design
practice. It effectively balances the complexity and com-
putational complexity and has a great potential for wide
adoption in practice. Furthermore, this work is expected
to provide insights into extensive applications of the
hybrid of numerical simulation and surrogate modeling in
optimizing construction costs for similar civil and infra-
structure cases identified with discrete variables and
implicit formulations of constraints.
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APPENDIX

See Tables 11–14 and Figures 10 and 11.
Optimization formulations of two classical engineering

problems are presented as follows:
Pressure vessel design problem.
Consider x ¼ x1; x2; x3; x4½ � ¼ Ts;Th; R; L½ �

Minimize F8 xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x23

þ 3:1611x21x4 þ 19:84x21x3 ð16Þ

Table 10. Optimized design parameters for case history B

Design solution a (m) lp (m) s (m) Cost (USD/m) spost-construction (m) spost-construction-FEM (m)

Optimized 1.1 10 2.9 379.5 0.1289 0.1385
Original 1.2 8.5 1.9 793.4 0.2194 0.2194
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Table 11. Information of benchmark functions used in the examination

Benchmark function Range of variable xgbest fmin Type

F1 xð Þ ¼PD
i¼1

x2i (−100, 100)D 0 0 unimodal

F2 xð Þ ¼PD
i¼1

�xi þ 5j j2 (−100, 100)D 5 0 unimodal

F3 xð Þ ¼PD
i¼1

Pi
j¼1

xj

 !2

(−100, 100)D 0 0 unimodal

F4 xð Þ ¼PD
i¼1

xij j þQD
i¼1 xij j (−10, 10)D 0 0 unimodal

F5 xð Þ ¼ PD�1

i¼1
100 x2i � xiþ1
� �2 þ xi � 1ð Þ2

� �
(−100, 100)D 0 0 multimodal

F6 xð Þ ¼ 20þ e� 20 exp �0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
D

XD

i¼1
x2i

r !
� exp

1
D

XD
i¼1

cos 2πxið Þ
 !

(−32, 32)D 0 0 multimodal

F7 xð Þ ¼ 1=4000
PD
i¼1

x2i �
QD
i¼1

cos xi=
ffiffi
i

p� �þ 1 (−100, 100)D 0 0 multimodal

Notes: fmin and xgbest are the minimum value and its position of the benchmark test function, respectively (bold values indicate all the elements in the
variable vector are consistent with the same value); D denotes the dimension of the variable x, which was set with the value of 10 for all benchmark
functions.

Table 12. Minimum of benchmark functions solved using four optimization algorithms

Benchmark function BH-GA BH GA PSO

Continuous Discrete Continuous Discrete Continuous Discrete Continuous Discrete

F1 1.72× 10−7 0.00× 10 1.88× 10−10 3.55× 10 7.51× 10−6 1.00× 10−2 1.82× 102 1.21× 10
F2 1.52× 10−7 0.00× 10 8.24× 10−10 2.10× 10−1 2.52× 10−6 0.00× 10 5.89× 102 9.13× 101

F3 3.75× 10−5 6.00× 10−2 1.00× 10−8 4.36× 102 1.24× 102 3.23× 10 3.19× 102 2.52× 103

F4 1.26× 10−3 0.00× 10 9.33× 10−2 4.90× 10 9.54× 10−5 0.00× 10 3.81× 10 0.00× 10
F5 8.75× 10−3 5.12× 10 9.27× 10 5.48× 103 1.78× 101 6.48× 101 1.38× 106 2.40× 103

F6 6.70× 10−4 −8.88× 10−16 3.03× 10 3.61× 10 5.71× 10−4 −8.88× 10−16 7.93× 10 3.61× 10
F7 7.55× 10−4 4.36× 10−2 2.01× 101 7.77× 10−1 2.32× 10 1.52× 10−1 1.64× 101 0.00× 10

Table 13. Optimal results for optimizing problem of pressure vessel

Algorithm Optimal design variables Minimum cost (US$)

Ts Th R L

BH-GA 0.8125 0.4375 42.0984 176.6369 6059.134
GA 1 0.5 51.6463 85.7981 6425.222
BH 0.8750 0.4375 45.3368 140.2540 6089.992
PSO 0.9375 0.75 46.2379 149.3638 8102.176
MVO (Seyedali et al. 2015) 0.8125 0.4375 42.0907 176.7387 6060.807

Table 14. Optimal results for optimizing problem of cantilever beam

Algorithm Optimal design variables Minimum weight (lb)

x1 x2 x3 x4 x5

BH-GA 6.0101 5.3110 4.4977 3.5018 2.1531 1.339957
GA 5.8414 5.3418 4.6250 3.5118 2.1722 1.3411
BH 12.0180 8.2616 6.1819 5.3196 3.0749 2.1750
PSO 26.7417 26.6480 12.7289 9.8106 7.7842 5.2237
MVO (Seyedali et al. 2015) 6.0239 5.306 4.495 3.496 2.1527 1.349960
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Subject to

�x1 þ 0:0193x3 � 0

�x2 þ 0:00954x3 � 0

�πx23x4 �
4
3
πx33 þ 129600 � 0

0:0625 � x1; x2 � 99� 0:0625

10 � x3 � 200

10 � x4 � 240

8>>>>>>>>>><
>>>>>>>>>>:

Cantilever beam design problem.
Consider x ¼ x1; x2; x3; x4 ; x5½ �
MinimizeF9 xð Þ ¼ 0:0624 x1 þ x2 þ x3 þ x4 þ x5ð Þ

ð17Þ

Subject to

61
x31

þ 27
x32

þ 19
x33

þ 7
x34

þ 1
x35

� 1 � 0

0:01 � x1; x2; x3; x4; x5 � 100

8><
>:

NOTATION

Basic SI units are given in parentheses.

Ap cross-section area of a pile (m2)
a pile cap size (m)

c1 price of geogrid per unit square meter
(USD/m2)

c2 price of pile cap per unit cubic meter
(USD/m3)

c3 price of PHC pile per unit cubic meter
(USD/m3)

c4 price of pile connections per unit pile
length (USD/m)

d pile diameter (m)
F(x, β) deterministic part of the regression

model
faz allowable bearing capacity (Pa)
fBH fitness values of the black hole

(dimensionless)
fi fitness values of ith star (dimensionless)
fsk capacity of surrounding soil (Pa)
f T vector of regression functions
h pile cap thickness (m)
k number of geogrid layers (dimensionless)
L length of the cylinder except the head

(in)
lp pile length (m)
M moment force on pile cap (N·m)

MR moment resistance of pile cap (N·m)
m area replacement ratio (dimensionless)
N number of stars (dimensionless)
n number of piles (USD/m3)

pcz soil overburden stress (Pa)
pz additional stress induced by loading (Pa)
R inner radius (in)
Ra ultimate bearing capacity of the single

pile (Pa)
RBH event horizon of the black hole

(dimensionless)
Rs axial load applied on the single pile (N)

R(xi, xi
j) correlation function

r1, r2 learning factors (dimensionless)
Sgeogrid area of geogrid per layer (m2)
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Figure 10. Fitness evolution of seven benchmark functions (F1–�F7) over the iteration
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Figure 11. Schematics of classical engineering optimization
problems: (a) pressure vessel; (b) cantilever beam
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s pile spacing (m)
spost-construction post-construction settlement

Th thickness of the head (in)
Trupture rupture strength of geogrid

Ts thickness of the shell (in)
V shear force on pile cap (N)

Vpile volume of each pile (without the hollow
volume) (m3)

Vpile-cap volume of each pile cap (m3)
VR shear resistance of pile cap (N)
xBH position of the black hole in the search

space (dimensionless)
xbest,t the position of the best-fit individual in

the tth iteration
xi(t) positions of the ith star at the tth

iteration (dimensionless)
yi response of the ith sampling point

(dimensionless)
Z(x) stochastic process

β regression coefficient
βp corrective factors for pile (dimensionless)
βs corrective factors for surrounding soil

(dimensionless)
θ parameters of correlation model
λi the ith weight coefficient (dimensionless)

ABBREVIATIONS

BH black hole
E elastic

EP elastic-perfect plastic
FEM finite element method
GA genetic algorithm

GRPSF geogrid-reinforced pile-supported foundation
MOV multi-verse optimizer
SLS serviceability limit state
ULS ultimate limit state
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