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Abstract: An analytical three-dimensional slope reliability evaluation framework was developed in
this work independent of use of numerical simulations. The slope stability analysis was necessarily
carried out by utilizing an extended three-dimensional Morgenstern–Price method, which was
characterized by analytical formulations and competitive computational efficiency. Incorporation of
the presented stability analysis method into response surface methodology led to an effective slope
reliability evaluation framework. The applicability and superiority of this framework was examined
and validated using a real complicated landslide case reported in practice, and a hypothetical slope
example widely adopted in the literature. The impact of correlation coefficients and probability
distribution patterns on the slope reliability assessment results was further addressed to derive
additional benefits of this framework.

Keywords: three-dimensional reliability evaluation; response surface; Morgenstern–Price method;
probability distribution

1. Introduction

The stability analysis on a two-dimensional (2D) cross-section of a real slope has
been stated to be capable of giving reasonable and acceptable stability evaluation of three-
dimensional (3D) slopes or excavations in terms of the factor of safety [1,2]. The wide
applicability of 2D stability analysis is dependent on the implied plain-strain assumptions in
fundamental theory. This applicability requires that the analyzed slope extends sufficiently
in its width direction perpendicular to the analyzed cross-section and that the random
variability of soil properties is not significant in the sliding mass. The end effect of slope
geometry and probability effect of soil properties were gradually taken into account by
performing 3D stability analysis and reliability analysis, with efforts to remove different
hypotheses in the formulation of corresponding techniques [3,4]. Based on the limit
equilibrium principle, the rigorous formulation for 3D slope stability analysis requires
static force equilibrium and moment equilibrium on both the single column and the whole
sliding mass in all directions. In addition, it includes a certain static condition of inter-
column faces and a limit state of the slip surface with specific failure criterion. This
generally renders the problem indeterminate by producing more unknowns than knowns,
as described in [5,6].
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Further, approaches to solve the indeterminacy of this problem can be classified
based on three aspects as: (a) a reasonable compromise on force/moment equilibrium
in single or more directions [7,8]; (b) the assumptions on the geometry of the sliding
mass [9]; and, (c) efforts to introduce the simplified relationship of the inter-column forces
or forces on column bases, in addition to complying with failure criterion [10]. Note that the
combination of the foregoing aspects is commonly adopted in order to obtain the optimum
balance between the acceptance degree and the computational consumption for the derived
stability evaluation results [11].

Moreover, the kinematic movement analysis for the sliding mass is another alternative
in order to perform the 3D slope stability evaluation. It is accomplished by applying the
upper bound theorem in limit analysis [12,13], while the limit equilibrium formulation
can be identified as the application of the lower theorem in limit analysis. Although an
available extension has eliminated the column-partitioning technique manifesting in most
of the limit equilibrium methods [14,15], the extending 3D column technique based on
the 2D slice method is still attracting researchers’ attention due to its theoretically easy
understanding and accessibility for engineers [16]. It should be noted that the extensions of
the Morgenstern–Price (M-P) method [17] are reported mostly by highlighting the traits of
fitting the slip surface with an arbitrary geometry and transforming this to other extensions
by introducing the least number of possible simplifications in the earlier mentioned three
aspects [18,19].

Apparently, consideration of the end effect for the 3D sliding mass would lead to
the magnification of spatial variability for soil properties, which are inherently related to
composition and structural diversity of soils. Slope reliability analysis was particularly
developed to incorporate the above stochastic idea into the stability analysis of three-
dimensional slopes. Numerical simulations, especially finite element modeling, were
conventionally used to derive stability factors for three-dimensional slopes, which is
necessarily required in slope reliability evaluation [20,21]. However, many sampling
tools in reliability analysis (e.g., central point and checking point methods) can only be
implemented based on the derivative information of performance functions [22,23], which
is not available in numerical simulations. Their applicability to 3D slope reliability analysis
is extremely limited due to the difficulty of establishing the slope performance function in
explicit forms, which is a requisite condition to deduce derivative information.

In addition, the response surface method (RSM) proposed by Wong [24] stands out
among others as having the flexibility of completing random sampling by finite element
simulations and the capability of fitting the implicit performance function by polynomial
functions around a certain checking point [25]. Through this transformation, the conven-
tional reliability tools used in structural analysis are able to solve these explicit proxy
performance functions in polynomial forms characterizing the failure probability of the
sliding mass. In order to implement the reliability evaluation by RSM, based on the specific
limit equilibrium method, the formulations deduced by 2D slice or 3D column methods
were adopted to replace the finite element simulation without a clear physical formulation
in the sampling process [26,27]. The finding is worth mentioning in these attempts, such
that reliability analysis of a single determinate slip surface tends to give a less accurate slope
failure probability than that with multiple potential slip surfaces, regardless of the increase
in computational consumption. Chen and Zhu [28] thoroughly reviewed the application
of RSM to slope reliability analysis and identified all these problems by classifying them
into four categories, with suggestions on the selection of the appropriate RSM. The author
examined the feasibility of slope reliability evaluation based on the 2D M-P method and
the RSM in previous work [29]. Thus, the 3D extension for the 2D M-P method presented
in the following paragraph was incorporated into the RSM to evaluate its applicability to
be extended to 3D slope reliability analysis.

This paper presents the formulation of the 3D Morgenstern–Price Method (3DMPM),
and examines its accuracy and effectiveness on a practical landslide case with complex
geometry, and a hypothetical spherical slope example with external evaluation results, both
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of which are well reported in the literature. The implementation of the incorporation this
3DMPM technique into the RSM is demonstrated so as to examine its applicability in 3D
slope reliability evaluation based on the hypothetic spherical slope example. Additionally,
the impact of stochastic properties for slope soils and their priority in the cross-influence
evaluation of the slope reliability condition was explored. This work may provide insights
into the impact of soil stochastic characteristics on slope failure probability and offer an
alternative for 3D slope reliability evaluation.

2. Implementation of 3DMPM
2.1. Assumptions

The schematic for the meshing grid of the sliding mass with a coordinate system is
illustrated in Figure 1. The neutral plane (XOY plane with z = 0) is set on the cross-section
with the largest area perpendicular to the axis of rotation.
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Figure 1. Meshing grid of sliding mass with coordinate system.

The discretization generates a number of quadrangular prisms denoted by columns
contacting closely with each other continuously during the sliding movement. Each single
column is identified by a row number i (i = 1, 2, . . . , L) in the direction of axis X united
with a column number j (j = 1, 2, . . . , M) in the direction of axis Z. The schematic of force
analysis on a typical column is depicted in Figure 2.
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The assumptions prescribed in the formulation to derive the factor of safety were
summarized in three parts by interfacing those proposed in the 2D M-P method with a
minor modification.

(1) The inter-column shear force V(i,j) and normal force E(i,j) exerting on the row face
(parallel to YOZ plane, i.e., face DCGH in Figure 2) of the typical column labeled by
(i, j) conform to the equation [18] as:

V(i,j) = λj f(i,j)(s)E(i,j) (1)

where λj is the proportional coefficient with the constant value for column group with
the same column number j (the subscript indicates the decisive variable on which the
value of this coefficient is dependent, the same meaning applies to the definition of
following coefficients), and f(i,j)(s) is the inter-column force function [29] given by:

f(i,j)(s) = sinAj
[
Bj(s)π

]
(2)

in which Aj is the shape coefficient for inter-column force function; Bj(s) is the
function characterizing the relative position of this typical column against the column
with maximum x coordinate in the column group with the same column number j:

Bj(s) =


S(i,j)
2s f j

0 ≤ S(i,j) ≤ s f j
1−2s f j+S(i,j)

2(1−2s f j)
S(i,j) ≤ s f j ≤ 1

(3)

where S(i,j) is the normalized x coordinate of the center for the base of the (i, j) column;
s f j is the maximum in the set of S(i,j) for the column group with the same column
number j.

(2) The inter-column normal force Q(i,j) in the Z axis direction and inter-column shear
force SH(i,j) in the Y axis direction exerts on the column face (parallel to XOY plane,
i.e., face BCGF in Figure 2) are neglected in accordance with the assumption in the
2D M-P method. This implies that the force equilibrium for each column is actually
enforced in the Y axis direction, referred to as the main sliding direction.

(3) Shear force T(i,j) applies to the column base integrating the whole slip surface, with
an inclination angle ρj over the XOY plane.

As stated earlier, the single subscript j of ρj indicates no variation for columns with
a different row number but in the column group with a constant column number. The
variation of ρj in the direction of axis Z was presumed to comply with two optional
patterns [30].

(a) ρj = constant, which means the whole sliding mass moves as a rigid body and
generates shear force on each column base in a constant direction, as used in [31].

(b) The magnitude of ρj increases linearly with the distance from the position of the
neutral plane in the direction of axis Z, but with opposite directions indicated by the
signs of z coordinates and by different rates adjusted by the value of η on two sides of
the neutral plane, as characterized by functions:

ρj = κz z ≥ 0 (4a)

ρj = ηκz z < 0 (4b)

where z indicates the z coordinate of the base center for each column, of which
the sign dictates the sign of the sliding direction, defined as a positive direction
by the projection in the positive direction of the Z axis; the coefficient η indicates
the asymmetrically increasing rate of ρj on two sides of the neutral plane; and κ

is an unknown involved throughout the formulation to be solved. Note that the
symmetricity of the slope geometry and the soil properties on two sides of the neutral
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plane can render the value of κ by zero and the value of η by unit. This means that
the sliding mass moves as a rigid body in the direction perpendicular to the rotational
axis. With the solution of κ and η obtained, the sliding orientation of each column
is determinate, in addition to the shear force distribution on the slip surface for the
whole sliding mass.

The normal direction of each column base is characterized by the direction derivatives
nX(i,j), nY(i,j) and nZ(i,j), and the direction of shear force T(i,j) on each column base by the
direction derivatives mX(i,j), mY(i,j) and mZ(i,j), deduced by the following equations:

mZ(i,j) = sinρj (5){
m2

X(i,j) + m2
Y(i,j) + m2

Z(i,j) = 1
mX(i,j)nX(i,j) + mY(i,j)nY(i,j) + mZ(i,j)nZ(i,j) = 0

(6)

Note that the solutions with mX(i,j) < 0 should be eliminated due to the physical
insignificance of sliding upward against the gravity of the sliding mass.

2.2. Formulation for Solving Factor of Safety in 3DMPM

(1) The force equilibrium in the X axis direction for each column gives:

nX(i,j)N(i,j) + E(i−1,j) + mX(i,j)T(i,j) − E(i,j) = 0 (7)

(2) The force equilibrium in the Y axis direction for each column by substituting Equa-
tion (1) gives:

λj f(i−1,j)E(i−1,j) −W(i,j) + mY(i,j)T(i,j) + nY(i,j)N(i,j) − λj f(i,j)E(i,j) = 0 (8)

where N(i,j) denotes the normal force acting at the base center of each column and
W(i,j) denotes the gravity of each column applying at its centroid.

(3) The forces on the column base in compliance with the Mohr–Coulomb criterion, that
the definition of the factor of safety by the mobilized proportion of the shear strength
for each column base to maintain the limit equilibrium state is:

T(i,j) =

(
N(i,j) − u(i,j)A(i,j)

)
tanϕ(i,j)

Fsj
+

C(i,j)A(i,j)

Fsj
(9)

in which u(i,j) represents the average pore water pressure on each column base, A(i,j)
is the area of each column base, C(i,j) is the average cohesion on each column base, and
Fsj denotes the factor of safety for the column group with the same column number j.

Substituting Equation (9) into Equations (7) and (8) respectively yields:(
nX(i,j) +

mX(i,j)tanϕ(i,j)
Fsj

)
N(i,j) + E(i−1,j) − E(i,j) +

mX(i,j)C(i,j)A(i,j)
Fsj

−mX(i,j)tanϕ(i,j)u(i,j)A(i,j)
Fsj

= 0
(10)

(
nY(i,j) +

mY(i,j)tanϕ(i,j)
Fsj

)
N(i,j) + λj f(i−1,j)E(i−1,j) − λj f(i,j)E(i,j)

+
mY(i,j)C(i,j)A(i,j)

Fsj
− mY(i,j)tanϕ(i,j)u(i,j)A(i,j)

Fsj
−W(i,j) = 0

(11)

Eliminating N(i,j) by combining Equations (10) and (11) yields:

Φ(i,j)E(i,j) = Ψ(i−1,j)Φ(i−1,j)E(i−1,j) − FsjP(i,j) + R(i,j) (12)
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where:

Φ(i,j) =
(
λj f(i,j)mX(i,j) −mY(i,j)

)
tanϕ(i,j) +

(
λj f(i,j)nX(i,j) − nY(i,j)

)
Fsj (13)

Φ(i−1,j) =
(
λj f(i−1,j)mX(i−1,j) −mY(i−1,j)

)
tanϕ(i−1,j) +

(
λj f(i−1,j)nX(i−1,j) − nY(i−1,j)

)
Fsj (14)

Ψ(i−1,j) =

(
λj f(i−1,j)mX(i,j) −mY(i,j)

)
tanϕ(i,j) +

(
λj f(i−1,j)nX(i,j) − nY(i,j)

)
Fsj

Φ(i−1,j)
(15)

P(i,j) = −nX(i,j)W(i,j) (16)

and:

R(i,j) = mX(i,j)W(i,j) −
(

mX(i,j)nY(i,j) −mY(i,j)nX(i,j)

)
mY(i,j)tanϕ(i,j)u(i,j)A(i,j)

+
(

mX(i,j)nY(i,j) −mY(i,j)nX(i,j)

)
C(i,j)A(i,j)

(17)

The natural slope is free of surcharge, which renders the following force boundary
conditions:

E(0,j) = 0 (18a)

E(L,j) = 0 (18b)

Combining Equations (13)–(17) and (18a,b) derives the factor of safety for the column
group with the same column number j:

Fsj =
∑L−1

i=1 R(i,j) ∏L−1
k=i Ψ(k,j) + R(L,j)

∑L−1
i=1 P(i,j) ∏L−1

k=i Ψ(k,j) + P(L,j)
(19)

By taking a constant factor of safety Fsj for each column group, referred to as the factor
of safety F3s for the whole sliding mass:(

L−1

∑
i=1

P(i,j)
L−1

∏
k=i

Ψ(k,j) + P(L,j)

)
F3s =

L−1

∑
i=1

R(i,j)

L−1

∏
k=i

Ψ(k,j) + R(L,j) (j = 1, 2, · · · , M) (20)

Summation of the M equations in Equation (20) rewrites the factor of safety for the
whole sliding mass as:

F3s =
∑M

j=1

(
∑L−1

i=1 R(i,j) ∏L−1
k=i Ψ(k,j) + R(L,j)

)
∑M

j=1

(
∑L−1

i=1 P(i,j) ∏L−1
k=i Ψ(k,j) + P(L,j)

) (21)

(4) Establishment of the force equilibrium equation in the Z axis direction for the whole
sliding mass:

∑ nZ(i,j)N(i,j) + ∑ mZ(i,j)T(i,j) = 0 (22)

Substituting Equation (9) into Equation (22) yields:

∑
[(

N(i,j) − u(i,j)A(i,j)

)
tanϕ(i,j) + C(i,j)A(i,j)

]
mZ(i,j) −∑ F3snZ(i,j)N(i,j) = 0 (23)

in which mZ(i,j) can be rewritten by mZj by the definition of ρj in Equation (5).
As M× L columns were meshed out, Equation (23) can be rewritten by:

M

∑
j=1

mZj

L

∑
i=1

[(
N(i,j) − u(i,j)A(i,j)

)
tanϕ(i,j) + C(i,j)A(i,j)

]
−

M

∑
j=1

F3s

L

∑
i=1

nZ(i,j)N(i,j) = 0 (24)
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(a) If constant ρj for each column is assumed, summation of Equation (24) for all columns
in column group with number j gives:

mZ(i,j) = mZj = mZ =
−F3s ∑M

j=1 ∑L
i=1 nZ(i,j)N(i,j)

∑M
j=1 ∑L

i=1

[(
N(i,j) − u(i,j)A(i,j)

)
tanϕ(i,j) + C(i,j)A(i,j)

] (25)

ρj = sin−1mZ (26)

in which mZ denotes the constant direction derivative in the Z axis for the whole
sliding mass.

(b) Columns with centroid coordinate Z ≥ 0 (denoted by ZRj) in the column group with
number j were labeled by row number in the range [M1, · · · , M]; thus Equation (24)
can be rewritten as:

mZj =
−F3s ∑L

i=1 nZ(i,j)N(i,j)

∑L
i=1

[(
N(i,j) − u(i,j)A(i,j)

)
tanϕ(i,j) + C(i,j)A(i,j)

] (27)

Combining Equations (4a) and (27) yields:

κZRj = sin−1mZj = sin−1 −F3s∑L
i=1 nZ(i,j)N(i,j)

∑L
i=1

[(
N(i,j) − u(i,j)A(i,j)

)
tanϕ(i,j) + C(i,j)A(i,j)

] (28)

The summation of Equation (28) for M−M1 + 1 columns with positive ZRj coordinates
yields:

κ =
∑M

j=M1
sin−1 −F3s ∑L

i=1 nZ(i,j)N(i,j)

∑L
i=1[(N(i,j)−u(i,j)A(i,j))tanϕ(i,j)+C(i,j)A(i,j)]

∑M
j=M1

ZRj
(29)

(c) Columns with centroid coordinate Z < 0 denoted by ZLj in the column group with
column number j were labeled by row number from 1 through M1; thus, the procedure
of deriving value of κ was repeated to obtain the value of η:

η =
∑M1

j=1 sin−1 −F3s ∑L
i=1 nZ(i,j)N(i,j)

∑L
i=1[(N(i,j)−u(i,j)A(i,j))tanϕ(i,j)+C(i,j)A(i,j)]

κ∑M1
j=1 ZRj

(30)

The value of ρj and the direction derivatives, i.e., mX(i,j), mY(i,j) and mZ(i,j) of shear
force T(i,j) for each column can be solved in Equations (5) and (6).

As depicted in Figure 3, the average height of each column is denoted by h(i,j), the
base of column (i, j) is measured by projective length d(i,j) in the Y axis direction and b(i,j)
in the X axis direction, respectively.
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The moment equilibrium equation about the axis going through the base center and
parallel to Z axis can be established as:

E(i,j)

(
Y(i,j) +

d(i,j)
2

)
= E(i−1,j)

(
Y(i−1,j) −

d(i,j)
2

)
+ λj

(
f(i,j)E(i,j) + f(i−1,j)E(i−1,j)

) b(i,j)
2

(31)

in which Y(i,j) represents the application height of E(i,j) started from the base side of the
application face for each column.

Substituting the definition of moment by E(i,j) as M′(i,j) = E(i,j)Y(i,j) into Equation (31)
yields:

M′(i,j) = M′(i−1,j) + λj

(
f(i,j)E(i,j) + f(i−1,j)E(i−1,j)

) b(i,j)
2
−
(

E(i,j) + E(i−1,j)

)d(i,j)
2

(32)

Summation of Equation (32) by adopting moment boundary conditions of M′(0,j) = 0
and M′(L,j) = 0 gives:

η λj

L

∑
i=1

b(i,j)
(

f(i,j)E(i,j) + f(i−1,j)E(i−1,j)

)
=

L

∑
i=1

d(i,j)
(

E(i,j) + E(i−1,j)

)
(33)

Equation (33) can be simplified by giving identical λj, denoted by λ for all columns in
column group with column number j but different row numbers, as suggested in [5]:

λ

(
L

∑
i=1

b(i,j)
(

f(i,j)E(i,j) + f(i−1,j)E(i−1,j)

))
=

L

∑
i=1

d(i,j)
(

E(i,j) + E(i−1,j)

)
(j = 1, 2, · · · , M) (34)

Summation of M equations in Equation (34) yields:

λ =
∑M

j=1 ∑L
i=1 d(i,j)

(
E(i,j) + E(i−1,j)

)
∑M

j=1 ∑L
i=1 b(i,j)

(
f(i,j)E(i,j) + f(i−1,j)E(i−1,j)

) (35)

The values of F3s, λ and ρj can be solved by combining Equations (21), (25) and (26) or
Equations (27)–(30) and (35).
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2.3. The Programming Implementation of 3DMPM

Since the above formulation is featured by recursion equations, the computation is
readily implemented by coding in the MATLAB environment with the iteration technique
applied to achieve convergence. The specific programming flowchart is summarized in
steps as given below.

(1) Establish the Cartesian coordinate system upon the sliding mass by aligning the Z
axis with the rotational axis, the XOY plane with the neutral plane with the largest
cross-section area, and the origin set at the toe of the neutral plane.

(2) Mesh the sliding mass into M× L element columns by the prescribed grid density
on the slip surface, label each column by row number along the X axis and column
number along the Z axis illustrated in Figure 1.

(3) Prescribe the soils’ properties, including unit weight and shear strength parameters,
and pore water pressure distribution, to each column according to the information by
geological survey.

(4) Prescribe the initial estimate of unknowns F3s0, λ0 and ρ0 for constant pattern (or
κ0 and η0 for linear pattern) by rough evaluation of the geometric and mechanic
characteristics of the object sliding mass.

(5) Gravity W(i,j) and gravity-related intermediate forces P(i,j) and R(i,j) can be calculated
in Equations (16) and (17) for each column.

(6) Angle-related intermediate variables Φ(i,j) and Ψ(i−1,j) can be obtained by substituting
F3s0 and λ0 into Equations (13)–(15) with direction derivatives solved in Equations (5)
and (6) by ρ0 or κ0 and η0.

(7) The value of F3s evolved by substitution of Φ(i,j) and Ψ(i−1,j) into Equation (21).
(8) Solve E(i,j) in Equation (12) by the updated F3s and the precedent Φ(i,j) and Ψ(i−1,j).
(9) Update the value of λ by substituting E(i,j) into Equation (35).
(10) Solve N(i,j) and T(i,j) by using E(i,j), F3s, Φ(i,j) and Ψ(i−1,j) in Equations (9) and (10).
(11) Update the value of ρ or κ and η by calculation of Equations (25) and (26) or Equa-

tions (27)–(30) with N(i,j) and F3s.
(12) The initial values of F3s0, λ0, ρ0 or κ0 and η0 are updated by the above computed results.
(13) The evolution of prescribed unknowns continues by repeating step (4) through step (12)

until the termination criterion are achieved, which were defined by |F3s0 − F3s| ≤ ε1,

| λ0 − λ| ≤ ε2, |ρ0 − ρ| ≤ ε3 or
∣∣∣(κ0 − κ)2 + (η0 − η)2

∣∣∣ ≤ ε2
3, where ε1, ε2 and ε3

denote the tolerance prescribed for unknowns.
(14) Output the solution of F3s, λ, ρ or κ and η.

Note that the computational efficiency for the above program is remarkable. The
convergence can be achieved with a few iterations even for a sliding mass with complex
geometry, as demonstrated in the later example case. This trait justifies the attempt to apply
this extension technique to sampling for slope reliability analysis provided its accuracy and
effectiveness in slope stability evaluation is examined, as presented below.

3. Examination of 3DMPM by Reported Example Cases

The application of this 3D extension technique was examined during a practical
landslide with irregular geometry reported by Chen et al. [32] and a hypothetic slope with
spherical slip surface used by Cheng and Yip [31]. The former example demonstrates the
capability of analyzing complex slopes, whereas the latter example provides externally
verifiable evidence for the accuracy of the calculated results by this 3DMPM.

3.1. Power Plant Slope of the Tianshengqiao II Project

This slope example originated from an excavation having a height of 170 m at a hydro-
power plant construction in China in the late 1980s. The landslide moved by 7.2 mm per
day, which means the slip surface had been fully formed. Site investigation by boreholes
and observation on uncovered failure soils identified the slip surface by the clay seam,
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which featured as the weak layer in the rock slope. The slope geometry, including the slope
surface and the slip surface, was delivered by nine cross-sections parallel to the neutral
plane with coordinates of key nodes in the grid given. It should be noted that the phreatic
line in each cross-section marked the ground water level inside the sliding mass but with an
absence of coordinate information. The restoration of this sliding mass was completed by
the graphic data acquisition tool and the meshing interpolation functions in MATLAB, as
demonstrated in Figure 4. The geometric characteristics of the real slope with reported grid
density of 25–30 m was reserved by a refined grid density of 5 m as depicted. The reported
geotechnical properties for the clay seam and sliding mass were adopted consistently, as
shown in Figure 4.
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The factor of safety solved for this example case by 3DMPM is 0.9403, which is slightly
smaller than the calculated result of 0.945 by Chen’s technique [32]. Eight iterations were
required to achieve the convergence and the values of unknowns F3s, λ, ρ or κ and η were
updated accordingly, as given in Table 1. Chen’s technique was implemented based on
the upper bound theorem in limit analysis, while the extension of the 2D M-P method
inherited from the limit equilibrium analysis was affiliated to the lower bound theorem
in limit analysis. The minor discrepancy between the two techniques demonstrates the
decent approximation of the actual factor of safety by approaching from opposite sides.
The applicability of 3DMPM in analyzing complicated slopes is, in practice, justified by
giving effective evaluations in excellent agreement with the reported benchmark.

Table 1. Iteration process for solving unknowns in the formulation.

Iteration
Count Unknowns F3s λ κ η

0 Initial value 1 0.1 0.5 1
1

Updated
value

0.92904658 0.343899892 0.002694623 1.760167704
2 0.935328933 0.355620079 0.002003866 2.191196578
3 0.941684448 0.353126985 0.00220214 2.011046151
4 0.939967021 0.353642088 0.002155628 2.049847772
5 0.940380074 0.353515887 0.002166378 2.040912157
6 0.940282089 0.353545864 0.002163924 2.042938779
7 0.940304766 0.353538998 0.002164479 2.042479728
8 0.94029961 0.35354055 0.002164355 2.04258301
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Interestingly enough, the column with negative z coordinates tends to move apart
from the neutral plane in the orientation double that of the column at the symmetric
position, as indicated by the value of η at 2.04. It should be kept in mind that the movement
of the sliding mass is an instant condition that is not able to indicate kinematic admissibility
or the evolution of slope failure, except for characterizing the direction of the shear force at
the column base.

3.2. Hypothetic Slope Example with Spherical Slip Surface

This vertical cup slope was used in an examination of extensions by Huang and
Tsai. [8] and Cheng and Yip [31], as seen in Figure 5. The sliding mass is idealized to
be a quarter of the sphere with a vertical symmetrical face at the bisection plane. The
coordinate system was set by taking the XOY face (i.e., neutral plane) as the symmetrical
face and the Z axis as its normal direction. The meshing was implemented based on the
coordinate system by giving label numbers M = L = 60 in Figure 1. Note that the complete
symmetricity of this example deduces the scenario of κ = 0 in Equation (4a,b), which
means the sliding direction is constantly parallel to the neutral plane for each column, as
explained in earlier section.
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Figure 5. Illustration of the hypothetical example.

The factor of safety solved by 3DMPM is close to that by Morgenstern–Price extension
in [31], with values of 1.874 and 1.803, respectively. It is stated that all extensions of 2D
slice methods are not capable of satisfying cross-sectional force equilibrium due to the high
indeterminacy inherent in the formulation [31,33]. The cross-sectional force equilibrium
condition for the row face perpendicular to the sliding direction was evaluated in this
extension, as shown in Figures 6 and 7. The fluctuation is illustrated around the zero within
the amplitude of 5 kN, except at the jump on the last cross-section located at the crest of
the sliding mass. This abnormal jump can be ascribed to the consistent meshing method
at the crest, which produces several columns at the last cross-section. A refined meshing
alternative should be adopted at the crest in order to eliminate this problem but was not
implemented in this work. It is expected that the failure of the force equilibrium at each
cross-section would lead to the summation of zero, which indicates the close solution of
the force equilibrium for the whole sliding mass.

The two examples demonstrate the capability of this extension for evaluating the
stability condition for both the complex slope in practice and the hypothetical slope in
examination. It does so by giving an estimate for the factor of safety that is close to that
via the other extensions. This applicability in stability analysis justifies the application
of 3DMPM to the slope reliability evaluation, as presented in the following sections by
incorporating with RSM to obviate the difficulty in solving the performance function
induced by the implicit formulation, as stated in the introduction.
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4. Reliability Evaluation on Hypothetic Slope Example by 3DMPM and RSM
4.1. Fundamentals of the Response Surface Method

In the conventional reliability analysis of structures, the core idea of RSM is the
establishment of the surrogate function with explicit expression. It aims at fitting the
structural response with the structural model parameters through the completion of random
sampling based on numerical computations [33]. This surrogate function denoted by the
response surface is initialized and prescribed to replace the actual surface around a certain
position of sample space, as depicted in Figure 8 with performance function Z = g(x1, x2)
and two random variables x1 and x2. Note that it is not necessary to find a response surface
function that fits well with the actual surface in the entire sample space, on the grounds
that the purpose of reliability analysis is to compute the checking points and corresponding
reliability indices [25]. The implicitness inherent in the actual performance function would
be eliminated by the response surface in the explicit form, with the fitting capacity required
only on the small region adjacent to checking points. The induced coefficients characterizing
the response surface are solved by interpolation of the numerical random samples. With
respect to reliability evaluation on an example case in engineering practice with Nr random
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variables denoted by X = (x1, x2, . . . , xNr ), a feasible response surface Z = g(X) can be
expressed by a quadratic polynomial without crossing terms, seen as:

Z = g(X) = a +
Nr

∑
i=1

bixi +
Nr

∑
i=1

cix2
i (36)

where a, bi and ci (i = 1, 2, . . . , Nr) are undetermined coefficients that can be solved by
2Nr + 1 interpolations on samples prior to the response surface being finalized.

Buildings 2022, 22, x FOR PEER REVIEW 13 of 19 
 

 
Figure 8. Schematic of the response surface. 

4.2. Establishment of Response Surface Model Based on 3DMPM 
4.2.1. Determination of Random Variables 

Earth slope stability is dominated by a slope geometry that is certain in a specific case 
and soil properties possessing large uncertainties. Shear strength parameters such as 
cohesion 𝐶  and friction angle ϕ were generally adopted to characterize the random 
variation by being taken as random variables in slope reliability evaluation [20], and were 
inherited in this work. 

4.2.2. Establishment of Performance Function 
The factor of safety in 3DMPM was not solvable by explicit expression in terms of 𝐶 

and ϕ as suggested in Equation (21). Based on the fundamental of RSM, the implicit 
function was approximated by a quadratic function with random variables by shear 
properties for each soil layer: 

𝐹ଷௌ ≈ 𝑎 +  𝑏𝑥 +  𝑐𝑥ଶேೝ
ୀଵ

ேೝ
ୀଵ  (37) 

where 𝑥  represent 𝐶  and ϕ  for different soil layers; for non-laminated slopes, only 
two random variables were used. 

The performance function for slope stability by 3DMPM can be written by: 

𝑍 = 𝑔ሺ𝑋ሻ = 𝐹ଷௌ − 1 = 𝑎 − 1 +  𝑏𝑥 +  𝑐𝑥ଶேೝ
ୀଵ

ேೝ
ୀଵ  (38) 

with corresponding limit state equation given by: 

𝑔ሺ𝑋ሻ = 𝐹ଷௌ − 1 = 𝑎 − 1 +  𝑏𝑥 +  𝑐𝑥ଶேೝ
ୀଵ

ேೝ
ୀଵ = 0 (39) 

where 𝐗 = ൫𝑥ଵ, 𝑥ଶ, … , 𝑥ேೝ൯ represents the random vector. 

4.2.3. Computation of Slope Reliability Index 
The program solving 𝐹ଷௌ in Section 2.3 was employed to complete the sampling in 

RSM, which was conventionally implemented by numerical simulation. The response 
surface function can be finalized with undetermined coefficients derived by interpolation 
on samples. Based on the response surface function, the three-dimensional slope 

Figure 8. Schematic of the response surface.

4.2. Establishment of Response Surface Model Based on 3DMPM
4.2.1. Determination of Random Variables

Earth slope stability is dominated by a slope geometry that is certain in a specific
case and soil properties possessing large uncertainties. Shear strength parameters such
as cohesion C and friction angle φ were generally adopted to characterize the random
variation by being taken as random variables in slope reliability evaluation [20], and were
inherited in this work.

4.2.2. Establishment of Performance Function

The factor of safety in 3DMPM was not solvable by explicit expression in terms of C and
φ as suggested in Equation (21). Based on the fundamental of RSM, the implicit function
was approximated by a quadratic function with random variables by shear properties for
each soil layer:

F3S ≈ a +
Nr

∑
i=1

bixi +
Nr

∑
i=1

cix2
i (37)

where xi represent Ci and φi for different soil layers; for non-laminated slopes, only two
random variables were used.

The performance function for slope stability by 3DMPM can be written by:

Z = g(X) = F3S − 1 = a− 1 +
Nr

∑
i=1

bixi +
Nr

∑
i=1

cix2
i (38)

with corresponding limit state equation given by:

g(X) = F3S − 1 = a− 1 +
Nr

∑
i=1

bixi +
Nr

∑
i=1

cix2
i = 0 (39)
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where X = (x1, x2, . . . , xNr ) represents the random vector.

4.2.3. Computation of Slope Reliability Index

The program solving F3S in Section 2.3 was employed to complete the sampling in
RSM, which was conventionally implemented by numerical simulation. The response
surface function can be finalized with undetermined coefficients derived by interpolation
on samples. Based on the response surface function, the three-dimensional slope reliability
index is solvable using the first-order second-moment technique [22]. The implementation
procedure is presented in the following steps.

(1) Give the mean value µxi , variation coefficient σxi and correlation coefficient ρxi for
each random variable xi according to the distribution pattern used in computation,
and prescribe an initial minimum reliability index βmin.

(2) Prescribe the mean value µxi of random vector to the initial sample denoted by

X(1)
D =

(
x(1)1 , x(1)2 , . . . , x(1)Nr

)
.

(3) Update the X(1)
D by interpolation close to the sample with (x(1)1 , x(1)2 , . . . , x(1)i ∓ frpσxi , . . . ,

x(1)Nr
) and obtain 2Nr + 1 samples, where coefficient frp is a value in the range of [1, 3].

(4) Obtain 2Nr + 1 estimates of g
(

X(1)
D

)
by Equation (38) and solve the undetermined

coefficients a, bi and ci (i = 1, 2, . . . , Nr) in the response surface function.
(5) Solve the checking point X∗(k)D and reliability index β(k) (k indicates the kth iteration)

using the first-order second-moment method.
(6) Examine the value of

∣∣∣β(k) − β(k−1)
∣∣∣ by comparing it with the prescribed tolerance; if it

is larger than the tolerance, update the X(k)
D by X(k+1)

D = X(k)
D + g

(
X(k)

D

)(
X∗(k)D − X(k)

D

)
/(

g
(

X(k)
D

)
− g
(

X∗(k)D

))
and update the response surface approaching the limit state by

looping with steps (3)–(5); if the tolerance is achieved, output the failure probability
by Pf = Φ

(
−β(k)

)
and final reliability β(k); then, the minimum reliability index βmin

should be evolved in the next loop by β(k) if βmin > β(k).

4.3. Application to Hypothetic Example Case
4.3.1. Example Case

The reliability evaluation technique was applied to the hypothetical slope example
used in Section 3.2, as shown in Figure 5. Additional statistic properties were prescribed to
the cohesion and frictional angle of the hypothetic slope soils, as seen in Table 2, by referring
to available publications associated with slope reliability analysis [20]. The Monte-Carlo
technique [34] was employed to calculate the benchmark reliability and this presented
technique’s accuracy and efficiency was demonstrated by comparison as shown in Table 3.
For simplicity, the example case under computation prescribed independent random
variables with a normal probability distribution by the correlation coefficient of zero. On
a personal computer with an Intel(R) Core(TM) i5-4210U CPU @ 1.70 GHz 2.40 GHz
processor, the time consumption of this presented technique is about one ten-thousandth
of that needed in the Monte-Carlo technique, with an error margin of 0.37 percent. With
acceptable engineering precision, the efficiency improvement justifies the priority and the
applicability of this presented technique in evaluating three-dimensional slope reliability.

Table 2. Statistic properties for slope soils.

Statistic Properties Mean Value µx Variation Coefficient σx

Cohesion C 24.5 kPa 0.15
Friction angle φ 20◦ 0.15
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Table 3. Comparison with the Monte-Carlo technique.

Establishment of
Performance Function

Method Solving
Reliability

Reliability
Index β3D

Error, % Running
Time, Seconds

3DMPM&RSM First-order
second-moment 4.073 0.37 2

3DMPM Monte-Carlo 4.057 – 16,292

4.3.2. Discussion

It should be noted that the two shear strength parameters are not independent vari-
ables in this work, which could manifest different probability distribution patterns. Further,
the correlation coefficient between them tends to have a significant impact on the reliability
evaluation, as reported in other studies [35,36]. Thus, in order to obtain a wider under-
standing of the spatial variability of slope soils, the commonly used lognormal distribution
and normal distribution were adopted to characterize C and φ in computation, which
generated four combinations as shown in Table 4. The correlation coefficient ρC,φ was
prescribed from −0.3 through 0.3, bearing in mind the overlap range formed by the values
found in other relevant works [22]. The reliability results β3D calculated by this technique
with respect to each parameter set are also presented in Table 4 and plotted in Figure 9.

Table 4. Slope reliability with different probability distribution patterns and correlation coefficients.

Combination
Probability Distribution Pattern Correlation Coefficient ρC,φ

Cohesion C Friction Angle φ −0.3 −0.2 −0.1 0 0.1 0.2 0.3

I Normal Normal 4.645 4.426 4.237 4.073 3.927 3.796 3.677
I Normal Lognormal 4.635 4.436 4.268 4.122 3.997 3.885 3.785

III Lognormal Normal 6.075 5.690 5.370 5.099 4.865 4.662 4.482
IV Lognormal Lognormal 6.454 6.080 5.769 5.507 5.280 5.083 4.909
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The decreasing trend of the reliability index with increasing correlation coefficient
is observed for all combinations. Certainly, this indicates the importance of giving a
reasonable correlation coefficient between random variables in slope reliability analysis.
This influence deserves more attention when the cohesion conforms to the lognormal
probability distribution, which can be revealed by the larger decreasing rate in profiles
labeled by C-Lognormal in Figure 9. Furthermore, of continued interest, is the insensitivity
of this trend relationally to the probability distribution of the friction angle, as demonstrated
by the similar slope variation of the two profiles for combinations featured by C-Lognormal
and C-Normal. This insensitivity in the switch between φ-Lognormal and φ-Normal is
manifested not only in the varying trend, but also in the value of the reliability index for
the cases of C-Normal.

The difference ratio of the reliability index induced by switching exclusively the
probability distribution of the cohesion or the friction angle is illustrated by cross-analysis
in Figure 10. Note that the label close to the plotting indicates the consistent variable;
for example, φ-Normal denotes the difference ratio induced by the switch between C-
Lognormal and C-Normal. The larger difference ratio in the four cases suggests that the
presence of this probability distribution tends to make the calculated reliability results more
sensitive to the selection of the correlation coefficient, and the selection of the probability
distribution pattern of other random variables. In other words, the stability degree of the
calculated results for slope reliability can be characterized by this plotting. The dominant
priority in this reliability evaluation can be ranked by C > φ and Normal > Lognormal,
which explains the highest turbulence in the case of φ-Lognormal and the lowest in the case
of C-Normal. It is worth mentioning that the relative priority formed between the cohesion
and the friction angle is expected to be mitigated with the increasing correlation coefficient,
as indicated by the opposite trends in the profiles for C-distribution and φ-distribution.
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Furthermore, final remarks regarding slope reliability analysis can be made: (a) the
increasing correlation coefficient between selected random variables would lead to the
decrease in the reliability index by an extent depending on the variables’ probability
distribution pattern; (b) the cohesion plays a larger role than the friction angle in the
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influence on the reliability induced by its probability distribution pattern; and (c) the
normal distribution of the random variable tends to dominate the stability degree of
reliability results more significantly than the lognormal distribution.

5. Conclusions

This work developed a three-dimensional slope reliability evaluation framework by
incorporating the extended Morgenstern–Price stability analysis formulations into the
response surface method. The applicability and efficiency of the extended stability analysis
method and reliability evaluation framework were validated using a complicated landslide
from practice and a hypothetical slope example from the literature. Based on the framework,
the sensitivity of the reliability index on probabilistic statistic parameters was examined.
The concluding remarks of this work are as follows:

1. The extended three-dimensional stability analysis method is capable of accounting
for the inter-column forces along the main sliding direction and the sliding direction
variation on each column, and is applicable to slope cases with highly asymmetric or
symmetric slip surfaces.

2. The reliability evaluation framework was found to attain better efficiency by incorpo-
rating the above stability analysis into the response surface method than that using
Monte-Carlo technique.

3. The increasing correlation coefficient between the cohesion and the friction angle can
reduce the slope reliability index.

4. The switch of the probability distribution pattern for the cohesion leads to more
significant degradation of the reliability index than that for the friction angle.

The findings obtained in this work may provide insights into the understanding
of slope failure or landslides by accounting for soil stochastic effects, and can be used
as a reference in the design practice of three-dimensional slope reliability. The impact
of statistical parameters of soils on the slope reliability in terms of additional aspects,
particularly the time-variant behavior, will be investigated in the future to improve the
applicability of the presented reliability evaluation framework.
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Notations: All symbols used in this work were presented by list in appearing order.

L maximum row number labeling soil columns
M maximum column number labeling soil columns
V(i,j) inter-column shear force exerting on row face
E(i,j) inter-column normal force exerting on row face
λj the proportional coefficient relating inter-column forces
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f(i,j)(s) the inter-column force function
Aj the shape coefficient for inter-column force function
Bj(s) the function characterizing the relative position
S(i,j) the normalized x coordinate of the center for the base of the (i, j) column
s f j the maximum in the set of S(i,j)
Q(i,j) inter-column normal force exerting on column face

inter-column shear force exerting on column face
T(i,j) shear force exerting on the column base
ρj the inclination angle formed by T(i,j) over X axis
κ coefficient in equation characterizing ρj
η coefficient in equation characterizing ρj
nX(i,j) directional derivative of normal direction of column base over X axis
nY(i,j) directional derivative of normal direction of column base over Y axis
nZ(i,j) directional derivative of normal direction of column base over Z axis
mX(i,j) directional derivative of shear force T(i,j) over X axis
mY(i,j) directional derivative of shear force T(i,j) over Y axis
mZ(i,j) directional derivative of shear force T(i,j) over Z axis
N(i,j) normal force exerting on the column base
W(i,j) the gravity of each column applying at its centroid
u(i,j) the average pore water pressure on each column base
A(i,j) the area of each column base
C(i,j) the average cohesion on each column base
Fsj the factor of safety for column group with the same column number j
F3s the factor of safety for the whole sliding mass
ZRj centroid coordinate for each column with Z ≥ 0
ZLj centroid coordinate for each column with Z < 0
M1 the maximum row number of columns with ZLj
h(i,j) the average height of each column
d(i,j) projective length of each column base in Y-axis direction
b(i,j) projective length of each column base in X-axis direction
Y(i,j) the application height of E(i,j) started from the base side
M′(i,j) moment formed by E(i,j) as M′(i,j) = E(i,j)Y(i,j)
λ identical λj for all columns
Φ(i,j) the intermedia function defined in Equation (13)
Ψ(i−1,j) the intermedia function defined in Equation (15)
P(i,j) the intermedia function defined in Equation (16)
R(i,j) the intermedia function defined in Equation (17)
Nr the number of random variables
X random vector defined by X = (x1, x2, . . . , xNr )
Z response surface
g(X) performance function
a, bi and ci undetermined coefficients in g(X)
µxi mean value for random variable
σxi variation coefficient for random variable
ρxi correlation coefficient for random variables
βmin initial minimum reliability index

X(k)
D updated sample in kth iteration

β(k) updated reliability index in kth iteration
C cohesion in slope example
φ friction angle in slope example
ρC,φ correlation coefficient for C and φ

β3D reliability index of slope example
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