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a b s t r a c t

Theglassfiber-reinforcedpolymer (GFRP) rebar reinforcedcementedsoil iswidely employedto

solve theweak foundation problem led by sludge particularly. The robustness of this structure

is highly dependent on the interface bond strength between the GFRP tendon and cemented

soils. However, its application is obstructed owing to the deficient studies on the influence

factors. Therefore, this study investigates the effects of water content (Cw: 50%e90%), cement

proportion (Cc: 6%e30%), and curing period (T c: 28e90 days) on peak and residual interface

bond strengths (Tp and Tt), as well as the unconfined compression strength (UCS). Results

indicated thatmechanical propertieswere positively responded to T c and Cc, while negatively

correlated to Cw. Besides, Random Forest (RF), one of the machine learning (ML) models, was

developed with its hyperparameters tuned by the firefly algorithm (FA) based on the experi-

mental dataset. The pullout strength was predicted by the ML model for the first time. High

correlation coefficients and low root-mean-square errors verified the accuracy of established

RF-FA models in this study. Subsequently, a coFA-based multi-objective optimisation firefly

algorithm (MOFA) was introduced to optimise tri-objectives between UCS, Tp (or Tt), and cost.

ThePareto frontsweresuccessfullyacquired foroptimalmixturedesigns,whichcontributes to

the application ofGFRP tendon reinforcedcemented soil inpractice. Inaddition, the sensitivity

of input variables was evaluated and ranked.
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1. Introduction

Cement is extensively applied in foundation improvement

and stabilisation to avoid sludge-induced problems particu-

larly [1e4]. Cement-soil composite is generated from the

pozzolanic activities caused by cement filling the pores in

sludge using soil mixing technique. The characteristics of this

mixed material are enhanced compared to that of the soil

[4e6]. Some solid wastes are also investigated for concrete

performance enhancement and sustainability, which have

the potential to be used in soil [7e11]. However, only cement-

soil composite alone is deficient to withstand the lateral earth

pressure in foundation pit support and blocking surfacewater.

The utilisation of steel rebar as part of the structure combined

with cement-soil matrix is one safer way to sustain the exte-

rior load [12e14]. However, the performance of the whole

composite is inevitably degraded by the steel corrosion during

its usage which has an especially serious impact on perma-

nent structures [15e18]. In case of degradation, the glass fiber-

reinforced polymer (GFRP) becomes a new tendon material to

displace the steel for its excellent engineering characteristics

and high affordability [19e23].

The interface bond performance of GFRP tendon-

reinforced cemented soils (GTRCS) presents their pullout

capability, in analogy to reinforced concrete [24e26]. In many

circumstances, failures are induced by the bonding surface

detachment but not the tendon reaching its ultimate strength.

Although it is essential, the interface-bond-strength-related

failure patterns are still indeterminate resulting in insuffi-

cient design codes of reinforced cement-soil structures [12,25].

Furthermore, preceding studies are mainly about cemented

soil's mechanical and hydraulic capacities with few concern-

ing the bond performance between soil and GFRP re-

inforcements [27e29]. These obstruct the application of

GTRCS in practice. Therefore, the investigation related to the

interface bonding strength of GTRCS is necessary.

To this end, some influencing factors are explored for the

bonding strength of GTRCS. Cement-soil composite consists
Fig. 1 e Detailed particle si
of cement, soil, and water with its mechanical properties

being affected by them [30e32]. Thereby, water content (Cw),

cement content (Cc), and curing time (Tc) are three variables in

this study. However, the laboratory approach required vast

effort to obtain reliable conclusions of these variables,

including heavy workload and numerous investing resources.

The subsequent result analysis conducted by regression

functions was inadequate because researchers usually

designed representative mixtures to conduct tests and

conclude their findings [33,34]. To deal with this problem, in-

vestigators adopted machine learning models (ML) on the

basis of their existing experiment dataset and explored cor-

responding inherent patterns [35e38]. Random forest (RF) as

one of the widespread ML models, had excellent generalisa-

tion and calculation capacities in the information field.

Furthermore, it also performed well in avoiding data over-

fitting and better tolerance for outliers as well as noise

compared to othermodels like support vector regression (SVR)

and artificial neural network (ANN) [39e41]. Hence, this model

was adopted in the data analysis of the study.

However, the limitation for RF's high dependency on

hyperparameters restricted its performances [42,43]. This

difficulty of hyperparameters adjustment was dealt with

optimisation algorithms by replacing conventional method-

ologies [44,45]. The firefly algorithm (FA) became the primary

choice because of its characteristics for automatic subdivision

and multimodality elimination among common algorithms,

including the genetic algorithm (GA) and particle swarm

optimisation (PSO) [46]. Therefore, researchers adopted this

algorithm to adjust hyperparameters of the RF model (FA-RF).

The aim of this study was to determine the desirablemixtures

by overall considering performances and production cost of

cemented soil mixtures. Accordingly, a multi-objective opti-

misation (MOO) model was proposed to fulfill this demand

relying on a metaheuristic algorithm [47]. It enabled to pro-

pose Pareto solutions to achieve optimisations of various ob-

jectives with limits of nonlinear constraints. Zhang et al. [48]

previously solved the optimising demands of slump, strength,
zes of soil sample [50].
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Table 1 e Materials used in the experimental program
[50].

Properties Values

Soil

Specific gravity 2.705

Natural moisture content (%) 30e90

Liquid limit (%) 58.1

Plasticity limit (%) 28.6

Cement

Type P.O 42.5

Specific gravity (t/m3) 3.0e3.2

Compressive strength (MPa) �42.5 (28-day)

Normal consistency (%) 27

GFRP reinforcement

Type GFRP tendon

Rib spacing (mm) 10.1

Tensile strength (MPa) 466

External diameter (mm) 16.8

Internal diameter (mm) 15

Young's modulus (GPa) 40
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and cost of plastic concrete. Similarly, three objectives of

GTRCS, including Tp, Tt and cost, were optimised by intro-

ducing MOO based on the FA-RF (MOFA-RF).

In this study, compressive and pullout strengths were

carried out to investigate the impact of three variables (Cc, Cw,

Tc) on GTRCS. The dataset consists of 150 groups of

compressive and pullout strengths (peak and residual), as

shown in the Appendix, which was then utilised for machine

learning prediction for the first time. Subsequently, theMOFA-

RF was established for tri-objective GTRCS optimisation

mixture design through obtaining the Pareto fronts. Finally,

ranking importance for input variables was explored.
Table 2 e Influence variables with all levels used in the
experimental project [50].

Influence factor Number of levels Magnitude

Water content Cw (%) 5 50, 60, 70, 80, 90

Cement content Cc (%) 5 6, 12, 18, 24, 30

Curing duration Tc (days) 6 7, 14, 28, 42, 60, 90
2. Experimental programs

2.1. Materials

The soil was gathered from the floodplain at the confluence of

Xiangjiang and Jinjiang River in Changsha, China. It was air-

dried, ground in a machine, and then sifted out. Only parti-

cles with a diameter less than 5 mm were reserved to provide

a good combination with cement particles, resulting in uni-

form granularity of cemented soil. The detailed particle-size

distribution of soil is presented in Fig. 1. The ordinary Port-

land cement with a strength grade of 42.5 MPa and GFRP

tendons with 230 mm in height were selected to form GTRCS

as pullout specimens. The alkali-free glass fiber (alkali content

less than 0.8%) was used to produce GFRP tendon and the fiber

volume fraction was 60%. The properties of GFRP tendonwere

tested by the Test Center of China Coal Research Institute.

Table 1 presents the properties of the soil sample, cement, and

GFRP tendons [49].

2.2. Mixture design

Cw, Cc, and Tc are the three main influence variables of GTRCS

performance as mentioned before. Water and cement con-

tents are defined as below:
Cw ¼mw

ms
(1)

Cc ¼ mc

mw þms
(2)

where mw means the weight of the water added; ms is the

weight of the dry soil; mc denotes the weight of the cement.

Cw ranged from 50% to 90% in this study because areas

where cemented stabilization is widely applied usually

feature clay with water content near the liquid limit. Cc was

designed between 6% and 30% to offer sufficient workability

and optimum stabilization efficiency [5]. Besides, composites

cured for 15e30 days are widely used in practice to solve

problems such as tight schedules [51,52]. Hence, 5 stepwise

increasing levels were chosen for Cw and Cc, and 6 levels for Tc

with specific details shown in Table 2. In total, 150 GTRCS

specimens were prepared in this study (5 levels for Cc � 5

levels for Cw � 6 levels for Tc).

2.3. Sample preparation

Generally, ‘it is challenging to obtain the interface shear

response of a full-length soil nail (normally several meters)

because the nail is overlength. Meanwhile, sensors must be

installed in an appropriate and representative location which

is hard to achieve. Therefore, an element nail pullout cell

(Fig. 2) was specially designed to address the difficulty

involved in capturing key aspects of the various coupled re-

lationships that affect soil-nail interaction [50]. The effective

bond length of the tendon is set as 80mm (around 1/100 of the

actual length), representing a small fraction of the full-length

nail in practice. This apparatus was supposed to determine

the interface shear stress and relative displacement because

of the negligible axial deformation of the tendon and con-

strained deformation of the soil [53]. The tendons in pullout

cells had located the center before finishing the procedure of

cemented soil transferring.

The raw materials to produce different proportional

cemented soil mixtures were water, cement, and soil in this

study, which were calculated from designing proportions

(Cc, Cw). Dry soil and cement were mixed for 60 s to keep

uniform before the water addition. The required amount of

water was stirred with the dry mixture lasting 480 s, and

conclusive wet cemented soil was then transferred into the

cells for further curing. Prior to mixtures pouring, the base of

the cell was decorated by the paper plate sealants to prevent

concrete loss. The internal surface of the cell was wiped

through lubricants to minimise the boundary friction,

reducing the negative influence on the bonding strength

measurement. Afterward, the cemented soil mixtures were

vibrated and densified. Finally, the cells were cured in

https://doi.org/10.1016/j.jmrt.2022.02.076
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Fig. 2 e Diagrams of pullout cells with tendon (a) schematic diagram (b) side view (c) plan view [50].
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plastic bags according to the predetermined design period.

Plates of pullout cells should be removed after seven days,

while compressive cells remain attached until curing is

completed.

2.4. Pullout test

The pullout test apparatus used in this study is shown in Fig. 3,

called pile interface friction testing system (PIFTS). To deter-

mine the interface bonding strength of GTRCS, pullout speci-

mens were initially mounted to the traveling platform.

Afterward, the tendon head was attached to the load cell

through the connection cylinder. Specifically, two stacked

epoxy nuts were fixed at the end of the tendon to enlarge the

tendon head, as shown in Fig. 4a. The connection cylinderwas

presented in Fig. 4b, which was utilised to connect the load

cell and the GFRP tendon. It consisted of upper and lower

screw rings and a cylinder which was split into two parts to

lock the enlarged tendon head. A threaded rod with a nut was

used to connect the load cell to the upper screw ring through

the central hole which was on the upper screw ring. The

connection apparatus was carefully checked to ensure the

capacity for the maximum pullout load.

The compatibility between pullout samples and equip-

ment was controlled by tightening constraining plates as

well as the platform. To minimise the misalignment of the

tendon and load direction, the housing sleeves (20 mm) were

set up in the cover and base plates, and a spherical joint was

used at the top of the load cell, as shown in Figs. 2 and 3,

respectively. Afterward, operators lowered the traveling

platform at a 1.0 mm/min rate to transfer the load to GFRP

tendons. This process terminated when platform displace-

ment reached 20 mm, where tendons almost detached from

their surrounding cemented soil matrix [16,54]. The interface

shear stress was timely recorded by the top load cell. The

relative displacement between the GFRP tendon and

cemented soil (the pullout displacement of the tendon) was

timely recorded by the bottom Linear Variable Differential

Transformer (LVDT). In conclusion, the dataset of speci-

mens’ strength including Tp and Tt was summarized in the

Appendix.
2.5. Unconfined compression test

Those compressive samples in cubic cells (10 cm side length)

were utilised to determine compressive performances in this

study. For equipment selection, the TYA-2000S Electron-Hy-

draulic compression machine was suitable because of its

0.01 KN accuracy. During the compression process, operators

imposed a load rate at 0.03e0.15 kN/s until samples deformed

sharply to be destroyed, determining the compressive

capacities.
3. Multi-objective optimisation approach

The schematic illustrations of the whole process for MOFA-RF

operation to obtain optimal GTRCS mixtures are shown in

Fig. 5. The first step consisted of three RF model suggestions

for predicting UCS, Tp, and Tt. During this process, two

hyperparameters of RF were automatically adjusted by FA

algorithm and 10-fold cross-validations (CV), which are the

total number of regression trees (numTree) and the minimum

sample number of a leaf node (minNumLeaf ). In themeantime,

the cost of eachmixture was determined through defining the

cost and density of each raw material, such as cement, water,

and soil. The FA was then developed to MOFA for tri-objective

design of GTRCS and a weighted sum approach was used for

these three objectives. Ultimately, the Pareto front was sub-

sequently constructed to demonstrate the GTRCS improve-

ment blend plan. The ML and optimisation experiments were

both implemented through Matlab R2020a.

3.1. Data description

Asmentioned above, the variables are the cement proportion,

water content, and curing period. These variables can be used

to compute the mass ratio of the raw materials (cement,

water, and soil). The outputs are the compressive strength and

peak and residual pullout strengths with their datasets

derived from the mechanical tests. Table 3 summarizes the

basic database information for including raw materials and

UCS, Tp, and Tt.

https://doi.org/10.1016/j.jmrt.2022.02.076
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Fig. 3 e Diagram for pullout test apparatus [50].
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Figure 6 shows the correlations between input variables

based on the UCS, Tp, and Tt datasets. Only one correlation

matrix was presented since the experimental mixture de-

signs for UCS, Tp, and Tt are consistent. The relationships

between input variables are visualized using a correlation

matrix, representing the Pearson correlation coefficients

between any two different variables. Pearson correlation

coefficient is a commonly used method to evaluate the de-

gree of correlation between variable X and variable Y. Most

of the correlations between various components are less

than 0.5, indicating that the input variables are unlikely to

cause multicollinearity problems. The coefficient between

cement and water is around 0.5 and others are close to zero.

This is reasonability since they are designed based on the Cc

(6%e30%) and Cw (50%e90%), while other variables are in-

dependent such as curing time, water content, and soil. The

RF-FA model of the multi-object scheme was then proposed

in this way.
Fig. 4 e The images of (a) GFRP tendon
3.2. Establishment of FA-RF model

3.2.1. Random forest (RF)
Random Forest creates hundreds of decision trees (RTs) to

implement the final decision. RF model applies a ‘bagging’

way to integrate all the results derived from these RTs and

utilises voting to acquire the peak results [55]. The bagging

algorithm is proposed by Breiman [56], which effectively re-

duces the prediction variance and improves prediction per-

formance. The RF algorithm is described in Fig. 7. Equation (3)

shows the training set as Rn, where X and Y are the input

vectors with m features (X ¼ fx1; x2;…; xmg) and the output

scalar, respectively.

During the training process for each RT, n samples from the

training set are randomly sampled without replacement (1/n

possibility for each sample to be selected at each time). This

sample collecting process is called ‘bootstrap’ and the boot-

strap sample set is symbolled as Rq
n. Subsequently, the input
and (b) connection cylinder [50].

https://doi.org/10.1016/j.jmrt.2022.02.076
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Fig. 5 e Schematic descriptions of the MOFA-RF system to obtain optimal GTRCS.
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data Rq
n are split from the root node to the leaf node by the

algorithm. The prediction function ba (X, Rq
n) is constructed

upon completing the RT training process. The random forest

comprises k de-correlated RTs. Therefore, k prediction func-

tions ba (X, Rqk
n ), where k ¼ 1; 2;…; k, will be established. The

symbol qk represents independently distributed random vec-

tor to distinguish these RTs. Finally, the RF produces k outputs

fbY1; bY2;…; bYkg corresponding to each RT. By averaging these

outputs, as stated in Equation (4), the final prediction Y is

obtained.

Rn ¼fðX1;Y1Þ; ðX2;Y2Þ;…; ðXn;YnÞg (3)

Y¼1
k

Xk

i¼1

ba�X;Rqi
n

�
(4)

3.2.2. Firefly algorithm (FA)
The firefly algorithm is derived from the social behavior of

fireflies [57]. Fireflies are attracted to the brightness so that the

brighter firefly, themore attractive it is to others. However, the
Table 3 e Input and output variables in the UCS, Tp, and Tt asp

Variables Minimum Maximum

Cement (kg/m3) 86.67 438.02

Water (kg/m3) 486.69 684.22

Soil (kg/m3) 681.50 1102.10

Curing age (day) 7 90

UCS (kPa) 31.18 10255.10

Tp (kPa) 3 5363.07

Tt (kPa) 0.29 1109.60
attractiveness of brightness decreases as the distance be-

tween two fireflies increases. The brightest firefly travels

about the surroundings in a random pattern. Even though the

other fireflies are constantly moving towards it, it will even-

tually be seen. Its objective function determines the bright-

ness of an issue. Equation (5) depicts the position shift of

firefly i as it moves closer to firefly j, which is brighter.

xtþ1
i ¼xt

i þ b0e
�gr2

ij

�
xt
j �xt

i

�
þ aðrand�1 =2Þ (5)

rij ¼
���xt

j � xt
i

�� (6)

In the above function, xt
i and xt

j are the positions of two

fireflies i and j at the t-th iteration. Besides, rij in Equation (6)

shows the Euclidian distance between the positions of the

two fireflies and b0 means the highest attractiveness of the

firefly when r equals zero. Considering the brightness of dis-

tance and medium reduces, g is introduced as an absorption

coefficient (0e1). Besides, a and rand are the randomization

parameter and random vector derived from the Gaussian
ect.

Medium Mean Std Dev CV

259.46 256.33 113.35 0.44

593.54 588.72 51.92 0.09

847.92 863.48 117.52 0.14

35 40 28 0.7

1274.15 2215.78 2213.69 1.05

419.25 954.13 1169.73 1.23

74.56 179.52 224.56 1.25
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Fig. 6 e Correlation diagram of influencing factors in

mechanical performance.
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distribution, ranging from 0 to 1. The pseudocode of FA can be

shown in Fig. 8.

3.3. Cross fold validation

The overfitting problem caused by the limited amount of data

is a complex problem, which can be solved by 10-fold cross-

validation (CV) shown in Fig. 9. Specifically, the dataset was

first randomly divided into two parts: test fold and training

fold, which accounted for 30% and 70% of the whole dataset,

respectively. Then, the training fold was further randomly

segmented to ten sets where nine sets (internal training set)

aimed at model training. The remaining one set (validation

set) was used to calculate root-mean-square error (RMSE)

values. In the process of model training, FA algorithm was

implemented to update the hyperparameters within 50 iter-

ations through seeking the minimum RMSE [58]. The model

training and validation process was repeated ten times (i.e.,

10-fold CV). Ultimately, 10 RFmodelswere established and the

one with the least RMSE value was chosen as the final model,

to further evaluate its performance on the test set.

In this research, the root mean square error (RMSE), cor-

relation coefficient (R), mean absolute percentage error

(MAPE), and mean absolute error (MAE) employed to assess

the ML models’ characteristics are defined as:

RMSE¼
ffiffiffiffi
1
N

r XN
i¼1

�
y*
i � yi

�2
(7)

R¼ SN
i�1

�
y*
i � y*

��
yi � y

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN

i¼1

�
y*
i � y*

�2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SN

i¼1

�
yi � y

�2q (8)

MAPE¼ 1
N

Xn
i¼1

����y*
i � yi

yi

���� (9)

MAE¼ 1
N

Xn

i¼1

��y*
i �yi

�� (10)
where the number of samples in the dataset is denoted by N;

the predicted output of MLmodels is denoted by y*i ; the actual

output in the dataset is denoted by yi; the projected mean

value is y*, whereas the actualmean value in the dataset is b y.
3.4. Multi-objective optimisation

3.4.1. Objective function establishment
The representation function of UCS, Tp, and Tt are the known

FA-RF models. Meanwhile, the following is how the poly-

nomial function is utilised as the cost objective function:

Cost
�
$
	
m3

�¼CcQc þCwQw þ CsQs (11)

In Equation (11), Qw, Qs, Qc represents the amount (kg/m3)

of water, soil, and cement, respectively. In the case of C, it

denotes the unit pricing (kg/m3) of GTRCS components, as

given in Table 4.

3.4.2. Constraints
The following restrictions must be set for MOO issues: mate-

rial range, volume, and ratio limitations. The data scope is

derived from GTRCS files that determine the raw material top

and bottom limits. The volume restrictions show that the

quantity of cemented soil should be kept to amaximumof one

cubic meter shown in Equation (12):

Vm ¼Qc

Uc
þ Qw

Uw
þ Qs

Us
(12)

where Uc, Uw, and Us are unit weights of cement, water, and

soil, respectively.

Furthermore, fixed ratios are regulated for the correlation

establishment of different raw materials to find the best

GTRCS composition. These limitations are summarized in

Table 5.

3.4.3. MOFA-RF establishment
The MOFA-RF is created by merging the UCS, Tp, and cost

objective functions. There are many useful methods to solve

multi-objective optimisation problems, including the

weighted sum approach, ε-constraint, global criterion

method, goal programming, and the complex method [59].

Among these approaches, the weighted summethod is one of

the most widely used approaches mainly due to its simplicity.

The weighted summethod changesweights systemically, and

each different single objective optimisation determines a

different optimal solution. These solutions obtained approxi-

mate the Pareto front. This method has been used to develop

manymulti-objective optimisation algorithms, such as multi-

objective cuckoo search [59] and multi-objective optimisation

algorithm [60]. Therefore, the weighted sum is employed in

this research and function F is shown as follows:

F¼
Xk

k¼1

wkfk ;
Xk

k¼1

wk ¼ 1 (13)

where fk is the objective function; weights (wk) are calculated

as pk
K ; pk is the random value (from 0 to 1) with uniform dis-

tribution. In this study, two tri-objective functions showing
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Fig. 7 e Construction of an RF model.
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the relationship between UCS, cost, and Tp can be defined as

follows:

F1 ¼w1 ,UCS ð90 daysÞþw2 ,Tp ð90 daysÞþw3 , cost F2

¼w1 ,UCS ð90 daysÞþw2 ,Tt ð90 daysÞþw3,cost (14)

X3

k¼1

wk ¼1 (15)

The Pareto front is advised for optimising multi-purpose

objectives by providing non-dominate solutions [61]. Other

objectives cannot be improvedwithout degradation as a result
Begin 
Define objecƟve funcƟon 
Set the search space, total number of gener
Obtain light intensity  at  by 
Set light absorpƟon coefficient
Generate iniƟal populaƟon, 
While ( )

Update the generaƟon number, 
Tune randomisaƟon parameter usin
Tune aƩracƟveness parameter using

for  : no. fireflies 
for  : no. fireflies

if ( ＞ ) 
move firefly 

end if 
change aƩracƟven

end for 
end for 
Rank the fireflies and find th

end while 
Obtain results 
End 

Fig. 8 e The pseu
of this situation. If Z is the group of feasible solutions and x*2

Z is one of the Pareto points, x* can be recognised that no

existence of x2Z could satisfy:

fkðxÞ� fkðx*Þ for k ¼ 1;2;3;…; t and (16)

fkðxÞ< fkðx*Þ for atleast one k (17)

If fðx*Þ is larger than fðxÞ for every x, Pareto optimal

solution x* will be achieved. The Pareto front, seen in

Fig. 10, is made up of multiple Pareto points. The MOFA is

proposed in this work based on the FA algorithm using the
aƟons, and fireflies

g adapƟve inerƟa weight
 Guass/mouse chaoƟc map 

toward by levy flight

ess with distance 

e current best 

docode of FA.
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Fig. 9 e 10-Fold cross-validation.

Table 5 e The constraints of GTRCS input variables.

Variables Expressions Lower limit Upper limit

OPC Cc 87 438

Water Cw 487 684

Soil Cs 681 1102

Water content Cw=Cs 0.5 0.9

Cement content Cc=ðCw þCsÞ 0.06 0.3
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weight sum technique, with the pseudocode summarized

in Fig. 11.

3.4.4. Decision-making for MOO
As previously demonstrated, the Pareto front may be utilised

to solve MOO issues, but the peak optimal mixing percentage

is insufficient for decision-making. As a result, in this work,

the Technique for Order Preference by Similarity to Ideal So-

lution (TOPSIS) is presented [62]. It can pick a solution that is

closest to the positive ideal point (diþ) and farthest from the

negative ideal point (di�) simultaneously. The diþ and di� are

the objective function's best value and worst value, respec-

tively. As a result, using the formulae below, the solution with

the highest Ci is considered the best:

diþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

�
Fij � Fideal

j

�2

vuut (18)

di� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

j¼1

�
Fij � Fnon�ideal

j

�2

vuut (19)

Ci ¼ di�
diþ þ di�

(20)

where n is the total objective number and i represents the ith

Pareto point; Fidealj and Fnon�ideal
j are the ideal and non-ideal

values of the jth objective, respectively.

3.5. Variable importance measure

The relationship between inputs variables and output was

evaluated using global sensitivity analysis (GSA). When the

input value varies within its value range, it can measure the
Table 4 e The unit cost of each variable of GTRCS.

Variables Notation Unit price
($/kg)

Unit weight
(kg/m3)

OPC Cc 0.057 3100

Water Cw 0.001 1000

Soil Cs 0.014 2650
change of the established RF-FA output results [63]. Each

variable is examined independently when the other variables

maintain their mean values. The equations below offer a

gradient metric for evaluating output change and the relative

significance formulation. Specifically, the data sample is rep-

resented as x, and xa; a2f1; …; Mg denotes an input variable

through its range with L levels (M is the number of input

variables). The symbol y represents the output value which is

predicted by the RF-FA. According to the value range of xa and

L levels, the input variable xa can be divided into i values,

namely, xai; i ¼ f1; …; Lg. The symboldya;i ; i ¼ f1; …; Lg stands
for the sensitivity response indicator for xai; i ¼ f1; …; Lg.

ga ¼
XL

i¼2

jcya;l � dya;l�1 j
L� 1

(21)

Ra ¼ ga

,XL

i¼1

gi (22)
Fig. 10 e Pareto front and feasible points.
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Begin 
Define objecƟve funcƟon , , … ,
Generate iniƟal populaƟon of fireflies 
Determine light intensity  at  by 
Set light absorpƟon coefficient 
While 

for  (all n fireflies) 
Evaluate the approximaƟons of and to the Pareto front 

if  dominates , 
Move firefly from  to 
Generate new ones if constraints are not saƟsfied 

end if 
if no non-dominated soluƟons can be found 

Generate random weights 
Find the best soluƟon that can minimise the combined 

objecƟve 
Random walk around the best soluƟon 

end if 
Update and pass the non-dominated soluƟons to the next iteraƟons 

end 
Sort and find the current best approximaƟon to the Pareto front 
Update 

end while 
Post process results and visualisaƟon 

Fig. 11 e The pseudocode of MOFA.

Fig. 12 e Strength diagrams for soil mixtures including different water and cement content under varying curing periods (a)

UCS (b) Tp (c) Tt.
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Fig. 13 e RMSE of 10-fold CV for on the (a) UCS (b) Tp (c) Tt dataset.

Fig. 14 e RMSE iteration in the optimal fold of (a) UCS (b) Tp (c) Tt dataset.
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Fig. 15 e Actual versus predicted values for (a) UCS (b) Tp (c) Tt.
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where ga is a gradient metric and Ra is the relative importance

of the variable xa.
Table 6 e Evaluation index of UCS, Tp and Tt modelling in
the training set.

Test category Evaluation index

RMSE (kPa) R MAE (kPa) MAPE

UCS 841.40 0.932 591.64 0.765

Tp 318.75 0.981 219.92 1.322

Tt 84.92 0.943 49.53 1.103
4. Results and discussion

4.1. Results of laboratory tests

Figure 12 depicts relationships between varying input vari-

ables (Cc, Cw and Tc) and experimental mechanical perfor-

mances, including UCS, Tp, and Tt of GTRCS. The curing time

exerted a negligible effect on the UCS and Tp of specimens

owning 6% cement content, which was attributed to the

completed hydration reaction at the early stage with inade-

quate cement addition. Nevertheless, the compressive

strength and pullout strength of GTRCS both rose sharplywith

curing time extensionwhen cement content increased to 30%.

The possible explanation was that cement increment led to

greater amounts of stabilising hydration products. Mean-

while, longer curing time results in more thorough hydration

reaction and more hydration components, behaving gathered

dense behaviour instead of separated components. Unlike the

positive consequences of Cc and Tc, Cw imposed negative im-

pacts on the GTRCS performances, which weakened the

microstructure of the whole mixture by rising porosity.

Regarding the residual pullout strength, the general
increasing trend was observed when increasing cement con-

tent. It was also positively related to the curing time although

some fluctuations occurred which might be caused by the

experimental error. A detailed progressive failure of tendon-

cemented soil interface was reported by Chen et al. (2021)

[50]. In conclusion, the mechanical strengths of GTRCS (UCS,

Tp, Tt) were positively controlled by influencing factors (Cc, Tc),

converse to Cw.

4.2. Modelling results

4.2.1. Results of hyperparameter tuning
As previously indicated, the two hyperparameters of the RF

model (numTree, minNumLeaf ) were tuned using FA and 10-

fold CV. The ideal fold within 10 folds CV provides the

lowest RMSE, which is shown in Fig. 13. On the UCS, Tp, and Tt
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Fig. 16 e Pareto fronts of UCS, cost, and Tp for GTRCS (90

days).

Table 8 e Mixture proportions of Pareto solutions of
GTRCS (90 days).

Point Cc Cw UCS (kPa) Tp (kPa) Cost ($/m3) TPOSIS

A/C 22.43% 64.12% 5224.04 557.25 31.32 1

B 25.35% 60.76% 5268.02 545.94 33.89 0.96

D 6.99% 85.23% 384.34 20.43 17.49 0.30

Fig. 17 e Pareto fronts of UCS, cost, and Tt for GTRCS (90

days).
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datasets, the minimum RMSE was found at the 8th, 4th, and

4th folds, respectively. The corresponding RMSE iteration

processes in these folds are illustrated in Fig. 14. It was

observed that 5, 23, and 22 iterations were required to obtain

the minimum RMSE values, demonstrating the feasibility

and efficiency of adjusting the hyperparameters via the FA

algorithm. Finally, the hyperparameters of established RF

models were: UCS (numTree ¼ 7, minNumLeaf ¼ 1), Tp

(numTree ¼ 14, minNumLeaf ¼ 1), Tt (numTree ¼ 14,

minNumLeaf ¼ 1).

4.2.2. Performance of FA-RF
The predicting performance of existing FA-RF models on both

training and test sets is intuitively depicted in Fig. 15. The

closer distance between the points and the black solid diago-

nal line indicates the smaller error between actual and pre-

dicted values. Most points were close to the diagonal line

showing that the three established FA-RF models generally

provided accurate predictions on all of the datasets. Table 6

summarises the values of the FA-RF models' four evaluation

indicators (R, RMSE, MAE, andMAPE) for the prediction of UCS

and Tp and Tt on the test set. The R values were 0.9324, 0.981,

and 0.9426, respectively, indicating the low error between the

anticipated and actual results. Meanwhile, relatively low

RMSE, MAE, and MAPE values also verified the model predic-

tion accuracy. Besides, the RMSE or R values on the training

and test sets were similar so that the risk of overfitting or

underfitting problem was low.

4.2.3. GTRCS mixture optimisation
After establishing three FA-RF models, the MOFA-RF was

proposed to minimise the objective function using the
Table 7 e Mixture proportions of Pareto solutions of GTRCS (90

Point Cc Cw UCS (kPa)

A 26.55% 63.21% 5983.04

B/C 29.40% 59.41% 6139.51

D 6.82% 88.71% 494.65
weighted sum method. The objective of this study was to

maximise the 90-day UCS and pullout strength and

simultaneously minimise the cost. Finally, the Pareto front

of the tri-objective (UCS, cost, and Tp) optimisation design

was achieved shown in Fig. 16. In total, 100 non-

dominated Pareto points were generated in the Pareto

front and they presented an appropriate UCS, cost, and Tp

relationship, suggesting the effectiveness of MOFA-RF

model. To improve GTRCS mechanical performance (i.e.,

UCS and Tp), the cost must be increased. This is reason-

able since larger cement content results in higher me-

chanical strength and cement cost is relatively higher than

both water and soil.

Among the 100 non-dominated points, points A, B, C, and D

are four particular points corresponding to the single goal

optimisation design (highest TOPSIS, maximum UCS,

maximum Tp, and lowest cost). In Fig. 16, the 90-day UCS and

Tp simultaneously reached the peak values at 6139.51 kPa and

3632.70 kPa, respectively (point B/C). Besides, the least cost

(17.01 $/m3) was discovered at point D, whereas the UCS and

Tp were significantly diminished. Point A was judged to be the

optimal solution according to the TOPSIS theory, providing an

appropriate relationship between the three objectives. This
days).

Tp (kPa) Cost ($/m3) TPOSIS

3507.88 34.22 1

3632.70 36.80 0.97

57.60 17.01 0.41
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Fig. 18 e The relative importance of each variable on UCS,

Tp, and Tt of GTRCS mixture optimisation.
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point achieved the highest TOPSIS score of 1with 5983.04 kPa

UCS, 3507.88 kPa Tp, and a cost of 34.22 $/m3. Table 7 shows

the correspondingmixing proportions of solutions A, B, C, and

D.

Similarly, another Pareto front was successfully obtained

when the Tp was replaced as Tt shown in Fig. 17. The single

objective optimisation design corresponds to Point A, B, C, and

D showing the maximum TOPSIS score, UCS, Tt, and mini-

mum cost at 1, 5268.02 kPa, 557.25 kPa, and 17.49 $/m3,

respectively. The cement ratio and water content of each

design solution are presented in Table 8. In general, the

TOPSIS method automatically provides a design recommen-

dation for decision-makers. However, the final decision

should be made under specific circumstances.

4.2.4. Variable significance
Figure 18 shows the significance percentage of each input

variable for GTRCS. The cement content possessed the highest

important ratio at 45.88%, 42.77%, and 50.57%, respectively,

concerning UCS, Tp, and Tt. This finding agreed with the

experimental analysis that cement ratio remarkably influ-

enced the mechanical performance of GTRCS. Besides, the

water ratio was the second important variable since it deter-

mined the water to cement ratio. The curing time was the

least essential variable compared to water and cement ratios,

reaching only 13.95%, 17.87%, and 10.16% for UCS, Tp, and Tt.

This is mainly resulted from the less effect of curing time than

cement/water ratio on strength at late stage (e.g., 90 days),

which is indicated by the strength evolution curve.
5. Conclusions

This study conducted the compressive and pullout tests to

investigate UCS and the interface bond strength (peak and

residual) between the cemented soil and GFRP tendons. Based

on the laboratory tests results, the Pareto fronts were suc-

cessfully achieved through proposing MOFA-RF. The main

conclusions were depicted as follows.
� The mechanical properties (UCS, Tp, and Tt) of GTRCS were

positively related to cement content and curing age,

whereas they were negatively related to water content.

This phenomenon can be attributed to the thorough

cement hydration and increased hydrated product when

cement content is high, water content is low, and curing

time is long.

� The FA-RF models were successfully established on all the

datasets with high values of correlation coefficients (UCS:

0.9324, Tp: 0.981, Tt: 0.9426) and low RMSE values (UCS:

841.40 kPa, Tp: 318.75 kPa, Tt: 84.92 kPa). However, the

proposed models have their specificity on the laboratory

data. Thereby, model revision is required for field data

considering the inevitable difference between the labora-

tory and field test results.

� The Pareto fronts for tri-objective optimisation based on

MOFA-RF were successfully obtained, providing feasible

design solutions for decision-makers. Apart from the spe-

cific requirements, the solution with the highest TOPSIS is

preferable.

� From sensitivity analysis, the cement content was the

most significant influencing factor, followed by water

content and curing time.
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Appendix
Specimen Cc Cw Tc
(day)

UCS
(kPa)

Tp (kPa) Tt (kPa) Specimen Cc Cw Tc
(day)

UCS
(kPa)

Tp (kPa) Tt (kPa)

C06W50T07 0.06 0.50 7 186.43 53.77 6.18 C24W50T07 0.24 0.50 7 4176.33 1768.69 427.87

C06W50T14 0.06 0.50 14 182.38 53.23 18.55 C24W50T14 0.24 0.50 14 4666.67 2317.43 623.72

C06W50T28 0.06 0.50 28 219.86 70.58 5.72 C24W50T28 0.24 0.50 28 4770.39 2713.37 201.71

C06W50T42 0.06 0.50 42 304.08 72.47 19.89 C24W50T42 0.24 0.50 42 5817.69 3532.53 278.01

C06W50T60 0.06 0.50 60 337.41 79.31 24.64 C24W50T60 0.24 0.50 60 5979.59 2785.21 440.90

C06W50T90 0.06 0.50 90 358.50 92.08 33.25 C24W50T90 0.24 0.50 90 6197.96 3541.76 616.45

C06W60T07 0.06 0.60 7 43.51 15.75 3.32 C24W60T07 0.24 0.60 7 2585.33 1174.05 372.67

C06W60T14 0.06 0.60 14 54.54 7.39 2.56 C24W60T14 0.24 0.60 14 3297.28 1646.52 280.09

C06W60T28 0.06 0.60 28 68.76 13.54 4.70 C24W60T28 0.24 0.60 28 3708.16 2110.42 491.98

C06W60T42 0.06 0.60 42 108.82 49.09 10.33 C24W60T42 0.24 0.60 42 4948.98 2628.90 460.41

C06W60T60 0.06 0.60 60 150.14 49.88 12.61 C24W60T60 0.24 0.60 60 5272.79 2883.32 540.31

C06W60T90 0.06 0.60 90 268.37 46.06 13.90 C24W60T90 0.24 0.60 90 5212.24 2868.55 610.27

C06W70T07 0.06 0.70 7 54.29 7.02 2.34 C24W70T07 0.24 0.70 7 1654.22 494.43 160.91

C06W70T14 0.06 0.70 14 70.80 9.95 2.49 C24W70T14 0.24 0.70 14 2319.09 753.74 140.10

C06W70T28 0.06 0.70 28 83.40 9.95 2.05 C24W70T28 0.24 0.70 28 2383.27 965.03 222.70

C06W70T42 0.06 0.70 42 130.82 30.95 7.46 C24W70T42 0.24 0.70 42 2837.41 1480.38 365.71

C06W70T60 0.06 0.70 60 140.35 34.44 10.99 C24W70T60 0.24 0.70 60 3353.06 1571.07 275.01

C06W70T90 0.06 0.70 90 169.46 46.63 13.68 C24W70T90 0.24 0.70 90 3478.23 1605.97 242.19

C06W80T07 0.06 0.80 7 41.88 10.53 3.22 C24W80T07 0.24 0.80 7 822.31 192.02 45.56

C06W80T14 0.06 0.80 14 52.65 3.00 1.36 C24W80T14 0.24 0.80 14 1228.30 213.72 55.99

C06W80T28 0.06 0.80 28 58.45 4.61 1.15 C24W80T28 0.24 0.80 28 1309.97 323.51 75.90

C06W80T42 0.06 0.80 42 61.46 12.39 0.98 C24W80T42 0.24 0.80 42 1983.67 683.24 119.07

C06W80T60 0.06 0.80 60 73.91 16.10 3.47 C24W80T60 0.24 0.80 60 2425.65 857.21 160.91

C06W80T90 0.06 0.80 90 86.26 13.36 3.56 C24W80T90 0.24 0.80 90 2448.98 1187.54 168.34

C06W90T07 0.06 0.90 7 31.18 3.46 0.29 C24W90T07 0.24 0.90 7 781.36 192.74 53.48

C06W90T14 0.06 0.90 14 52.87 28.18 8.57 C24W90T14 0.24 0.90 14 1059.83 363.78 51.73

C06W90T28 0.06 0.90 28 62.24 27.52 4.97 C24W90T28 0.24 0.90 28 1305.10 439.46 32.37

C06W90T42 0.06 0.90 42 120.39 28.77 4.90 C24W90T42 0.24 0.90 42 1607.55 520.62 127.63

C06W90T60 0.06 0.90 60 122.31 57.09 15.86 C24W90T60 0.24 0.90 60 1734.35 577.49 77.37

C06W90T90 0.06 0.90 90 136.26 41.84 8.48 C24W90T90 0.24 0.90 90 1891.84 597.72 59.68

C12W50T07 0.12 0.50 7 933.88 386.33 54.84 C30W50T07 0.30 0.50 7 4715.90 1804.11 438.98

C12W50T14 0.12 0.50 14 1209.18 463.54 77.87 C30W50T14 0.30 0.50 14 6657.82 3014.98 271.80

C12W50T28 0.12 0.50 28 1468.98 647.42 175.64 C30W50T28 0.30 0.50 28 7695.24 3992.32 204.32

C12W50T42 0.12 0.50 42 1692.52 755.99 170.52 C30W50T42 0.30 0.50 42 7916.33 4303.62 687.53

C12W50T60 0.12 0.50 60 1868.03 589.84 116.95 C30W50T60 0.30 0.50 60 9260.82 4332.55 898.01

C12W50T90 0.12 0.50 90 2003.61 889.72 298.42 C30W50T90 0.30 0.50 90 10255.10 5363.07 1109.60

C12W60T07 0.12 0.60 7 623.95 265.83 60.55 C30W60T07 0.30 0.60 7 4104.90 1614.29 588.30

C12W60T14 0.12 0.60 14 835.46 277.12 44.27 C30W60T14 0.30 0.60 14 5389.29 2226.53 365.18

C12W60T28 0.12 0.60 28 967.62 314.72 58.58 C30W60T28 0.30 0.60 28 5980.95 3221.78 679.72

C12W60T42 0.12 0.60 42 933.33 328.26 73.22 C30W60T42 0.30 0.60 42 7687.07 4312.24 986.65

C12W60T60 0.12 0.60 60 934.00 505.89 130.73 C30W60T60 0.30 0.60 60 7782.31 4358.19 886.65

C12W60T90 0.12 0.60 90 1055.10 384.18 54.31 C30W60T90 0.30 0.60 90 9115.65 4063.76 782.51

C12W70T07 0.12 0.70 7 354.08 77.13 21.73 C30W70T07 0.30 0.70 7 2621.32 1010.63 190.99

C12W70T14 0.12 0.70 14 535.05 79.88 9.18 C30W70T14 0.30 0.70 14 3689.12 1432.39 397.89

C12W70T28 0.12 0.70 28 577.55 105.62 11.41 C30W70T28 0.30 0.70 28 3732.65 1599.84 339.86

C12W70T42 0.12 0.70 42 644.56 244.34 51.56 C30W70T42 0.30 0.70 42 4969.39 2541.44 459.53

C12W70T60 0.12 0.70 60 668.03 273.12 61.39 C30W70T60 0.30 0.70 60 5480.27 2680.36 403.2642

C12W70T90 0.12 0.70 90 816.46 277.08 91.11 C30W70T90 0.30 0.70 90 5780.27 3203.88 570.11

C12W80T07 0.12 0.80 7 209.93 29.70 2.88 C30W80T07 0.30 0.80 7 1481.50 640.16 148.2539

C12W80T14 0.12 0.80 14 376.05 40.58 11.14 C30W80T14 0.30 0.80 14 2660.45 1061.03 276.79

C12W80T28 0.12 0.80 28 384.45 48.03 7.11 C30W80T28 0.30 0.80 28 2720.88 1086.54 278.52

C12W80T42 0.12 0.80 42 421.43 132.74 15.33 C30W80T42 0.30 0.80 42 3568.71 1337.34 218.29

C12W80T60 0.12 0.80 60 432.93 127.68 20.79 C30W80T60 0.30 0.80 60 3693.83 1717.86 274.73

C12W80T90 0.12 0.80 90 477.01 144.09 24.16 C30W80T90 0.30 0.80 90 3977.55 1876.19 413.19

C12W90T07 0.12 0.90 7 161.77 32.39 9.95 C30W90T07 0.30 0.90 7 1398.98 492.88 153.83

C12W90T14 0.12 0.90 14 260.76 87.47 13.26 C30W90T14 0.30 0.90 14 1768.91 367.05 12.60

C12W90T28 0.12 0.90 28 324.08 110.92 20.17 C30W90T28 0.30 0.90 28 2373.95 816.56 133.62

C12W90T42 0.12 0.90 42 410.78 172.23 19.04 C30W90T42 0.30 0.90 42 2400.32 727.02 73.14

C12W90T60 0.12 0.90 60 429.24 171.31 11.33 C30W90T60 0.30 0.90 60 2842.18 1162.58 251.79

C12W90T90 0.12 0.90 90 469.25 126.67 20.90 C30W90T90 0.30 0.90 90 3283.40 965.46 125.80

C18W50T07 0.18 0.50 7 2469.45 684.58 129.45

(continued on next page)
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e (continued )

Specimen Cc Cw Tc
(day)

UCS
(kPa)

Tp (kPa) Tt (kPa) Specimen Cc Cw Tc
(day)

UCS
(kPa)

Tp (kPa) Tt (kPa)

C18W50T14 0.18 0.50 14 2580.66 1504.34 280.70

C18W50T28 0.18 0.50 28 3431.97 2026.57 480.12

C18W50T42 0.18 0.50 42 4075.51 2131.92 424.77

C18W50T60 0.18 0.50 60 4432.27 2152.95 476.92

C18W50T90 0.18 0.50 90 4931.29 2347.00 475.85

C18W60T07 0.18 0.60 7 1546.43 498.76 221.36

C18W60T14 0.18 0.60 14 2085.78 653.60 106.10

C18W60T28 0.18 0.60 28 2291.43 1174.05 218.56

C18W60T42 0.18 0.60 42 2548.09 1649.57 140.92

C18W60T60 0.18 0.60 60 2878.23 1530.54 331.57

C18W60T90 0.18 0.60 90 3098.16 1691.02 312.63

C18W70T07 0.18 0.70 7 898.78 294.60 26.16

C18W70T14 0.18 0.70 14 1157.21 347.57 64.95

C18W70T28 0.18 0.70 28 1243.20 399.04 83.61

C18W70T42 0.18 0.70 42 1506.12 491.96 87.54

C18W70T60 0.18 0.70 60 1802.99 532.03 93.50

C18W70T90 0.18 0.70 90 1983.95 599.07 63.61

C18W80T07 0.18 0.80 7 505.65 68.49 19.04

C18W80T14 0.18 0.80 14 744.76 177.90 14.99

C18W80T28 0.18 0.80 28 776.53 143.42 19.30

C18W80T42 0.18 0.80 42 936.05 306.70 91.85

C18W80T60 0.18 0.80 60 1039.52 323.36 65.05

C18W80T90 0.18 0.80 90 1142.72 329.27 61.41

C18W90T07 0.18 0.90 7 421.02 183.89 38.44

C18W90T14 0.18 0.90 14 586.75 234.27 67.23

C18W90T28 0.18 0.90 28 763.88 281.17 32.83

C18W90T42 0.18 0.90 42 863.06 326.27 30.41

C18W90T60 0.18 0.90 60 969.22 303.74 29.70

C18W90T90 0.18 0.90 90 1083.40 335.28 48.86
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