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1. Introduction 
 

As an imperative binding agent, cement is widely used 

in geotechnical engineering to improve and stabilise the 

ground with soft clay or polluted silt particularly (Kitazume 

2013, Qin et al. 2020, Alam et al. 2021). Cement filling the 

pores in soft soils employing soil mixing and jet grouting 

yields pozzolanic activities to produce cement-soil 

composite. The properties of this composite are much 

improved than its ingredients alone (Han 2014, Li et al. 

2020). 

The combination of reinforcements into cement-soil 

composites is proposed in excavation support and cutting  
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off surface water to sustain the inevitable lateral earth 

pressure (Shen et al. 2013, Luo et al. 2020, Xu et al. 2021).  

One traditional method is to utilize rebar reinforcement 

as part of the structure combined with the cement-soil 

matrix to withstand the exterior load. However, the rebar is 

bound to corrode during its service period which will lead 

to the deteriorated performance of the composite, 

particularly in permanent structures (Chen et al. 2018, 

Wang et al. 2019, Wang et al. 2022). To address this 

problem, GFRP tendons are employed to substitute the steel 

rebars due to their high affordability and outstanding 

engineering property (Yan and Lin 2016, Wang et al. 2018, 

Fan et al. 2021). 

The interface bond property of GTRCS is essential since 

it presents the pullout ability, in agreement with reinforced 

concrete (Tepfers et al. 2000, Ju et al. 2020). In many cases, 

failures are caused by the bonding surface detachment 

before the tendon reaches its ultimate strength. However, 
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Abstract.  Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in 

areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon 

is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP 

tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the 

influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) 

is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and 

laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, 

cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). 

The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative 

to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate 

strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the 

output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation 

coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) 

and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The 

results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and 

slip displacement. 
 

Keywords:   back propagation neural network; cemented soil; element pullout test; glass fibre reinforced polymer 

reinforcement; interface bond strength; machine learning; particle swarm optimisation 
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the failure mode correlated to the interface bond strength is 

indistinct, leading to inadequate design guidelines of 

reinforced cement-soil structures (CECS147 2016, Xie et 

al. 2020). Moreover, previous research mainly focuses on 

cemented soil's hydraulic characteristics and mechanical 

properties (Horpibulsuk et al. 2003, Chew et al. 2004, 

Abedini and Zhang 2021). Few reports mention the bond 

performance between soil and GFRP reinforcements 

(Timoney and Mccabe 2017, Zhao et al. 2020). This hinders 

the utilization of GFRP tendons in cemented soils in 

practice. 

Cementitious solid, soil solid, and water are the three 

main components of cement-soil composite, which largely 

influence its mechanical properties (Timoney et al. 2012, 

Kitazume 2013). Besides, the interface bond strength of 

GTRCS is correlated to the relative slip displacement (Sp) 

between cemented soil and tendons (Zhu et al. 2021). 

Consequently, water content (Cw), cement content (Cc), 

curing time (Tc), and Sp are four variables in this study. Due 

to complicated facilities and abundant samples prepared in 

an experimental environment, such a process was expensive 

and time-consuming. Moreover, the traditional data 

analysing methodologies have drawbacks in error control 

and obtaining the best mix proportion under multivariable 

conditions (Liu et al. 2015, Mou and Bai 2018, Hou et al. 

2021). Although multiple linear regression (MLR) and 

logistic regression (LR) are extensively employed, the curse 

of dimensionality and co-linearity susceptibility resulting in 

an inaccurate simulation is still common (Fernández-

Martínez et al. 2020, Medvedeva et al. 2020). Thereby, 

improved models are in great demand to help study 

interface bond strength. 
Nowadays, artificial intelligence (AI) techniques are 

commonly applied in the field of building materials and 

construction to build the bridge between inputs and outputs 

(Abedini et al. 2020, Alam et al. 2020, Zhang et al. 2021, 

Zhang et al. 2021, Feng et al. 2022). For instance, the 

artificial neural network (ANN) shows excellence in the 

prediction of concrete strength (Sun et al. 2021). The 

random forest (RF) vote to forecast concrete conductivity as 

an Ensemble Learning Method (Sun et al. 2021). The 

support vector regression (SVR)’s terrific ability to 

generalize and calculate makes it popular in the information 

mining field (Sun et al. 2021). Using AI techniques to 

process data in complicated experimental tasks saves both 

time and money (Sun et al. 2019, Gholipour et al. 2020, 

Sun et al. 2021). Back propagation neural network is of the 

most versatility and prevalence among all these techniques. 

Because it is programmed easily and fast since 

programmers only need to adjust the neural network 

configuration (Chandwani et al. 2015, Zhao et al. 2021). Its 

large-scale parallel computation provides the platform to 

assess any objects constantly with high efficiency. Thereby, 

BPNN has been in common application to forecast and 

compare mechanical characteristics of various materials. 

Although BPNN is in wide use, devising BPNN still 

consists of numerous arduous trial‐and‐error methodologies. 

The quantity of hidden layers and neurons in each of them 

are two major hyperparameters affecting BPNN 

characteristics directly (Sun et al. 2019). It costs plenty of 

effort and time to form the BPNN framework with optimal 

hyperparameters which hinders the subsequent process (Sun 

et al. 2020, Zhang et al. 2020, Zheng et al. 2020). Thereby, 

the particle swarm optimization (PSO) algorithm was used 

in this research to adjust the BPNN framework. In general, 

the PSO is a simple heuristic algorithm and stochastic 

technique (Abido et al. 2002). Its mechanism is well 

balanced and is flexible to suit and boost global and local 

search. In addition, compared to other optimization 

techniques, it has higher computational efficiency, demands 

less memory, and is performed easier (Medvedeva et al. 

2020). With the combination of these two, the number of 

hidden layers, the number of neurons in them, and the 

connection weights were adjusted to further save time and 

labor. Owning to the outstanding robustness, fast 

convergence, and satisfying distributed ability of the PSO 

algorithm, the improved framework predicted bond strength 

better. 

In summary, pullout tests were carried out in this study 

to explore the relationship between the interface bond 

strength (Tp) of GTRCS and four variables (Cw, Cc, Tc, and 

Sp), which are also the four features in machine learning. In 

total, 405 generated testing results served as the dataset to 

train the high accurate PSO-BPNN model. Testing and 

training datasets with the optimal BPNN were built to study 

the error conditions in both sets. Besides, computed 

correlation coefficients were also applied to evaluate the 

relationship between the forecasted and measured Tp 

outcome generated by such a model. Eventually, a 

sensitivity analysis was applied to acquire the ranking of the 

input variables. 

 

 

2. Experimental programs 
 

2.1 Materials 
 

Soil equipping 40%-80% natural water content was 

gathered from the floodplain, adjacent to the junction of 

Xiangjiang and Jinjiang River in Changsha, China. Soil 

particles were air-dried and ground in a machine before 

being sifted out. To obtain uniform granularity, only 

particles less than 5 millimeters in diameter were retained 

and the particle-size distribution is shown in Fig. 1. The 

ordinary Portland cement was utilized as the main binder 

composition with a strength grade of 42.5. GFRP tendon 

was 230mm in height to form GTRCS as pullout specimens. 

The characteristics of the soil sample, cement, and GFRP 

tendon are presented in Table 1 (Chen et al. 2020). 

 

2.2 Mixture design 
 

As mentioned above, Cw, Cc, and Tc are three variables 

that significantly influence the properties of GTRCS. Water 

content defines the proportion of the water to dry soil mass. 

Areas where cemented stabilization are widely employed 

usually feature clay with Cw near the liquid limit (normally 

ranging from 50% to 90%). Cement content is presented as 

the mass ratio of cement to the total of water and dry soil. It 

was designed specifically to offer optimal stabilization  
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efficiency and adequate workability, usually between 6% to 

30% (R. Babasaki 1996, Å hnberg 2006, Wang et al. 2021). 

Besides, properties of composites cured for 15 to 30 days 

are widely used in case of practical problems such as tight 

schedules (Han 2014, Xu et al. 2020). Hence, three 

stepwise increasing levels were chosen for Cw, Cc, and Tc 

with specific details shown in Table 2. In total, 27 GTRCS 

specimens were prepared in this study (3 levels for Cc × 3 

levels for Cw × 3 levels for Tc). 

 

 

 
Fig. 1 Particle size distribution of soil sample (Chen et al. 

2020) 

 

 

 

2.3 Sample preparation 
 
Cement-soil composites were prepared by mixing soil 

and cement samples for 60 seconds. Later, water was added 
and composites were mixed for another 480 seconds. GFRP 
bar was installed in the middle of the pullout cell, as 
presented in Fig. 2. The cells' bottoms were sealed with 
paper plates in case of leaking and their internal surfaces 
were lubricated to effectively limit the boundary friction. 
Then, cemented soils were placed into the pullout cell and 
vibrated to compact the microstructure with an even density. 
Subsequently, each cell was stored in sealed plastic bags for 
a preset curing time. After 7-day curing, paper plates were 
detached to avoid extra adhesion. 
 

2.4 Pullout test 
 

The pullout load was conducted to the GTRCS 

specimen tendon employing a pile interface friction testing 

system (PIFTS) and its conformation is presented in Fig. 3. 

The GTRCS specimen was installed on the traveling 

platform and the tendon’s top was fixed to the load cell. The 

traveling platform supplied the pullout force on the tendon. 

It was fixed tightly with a constraining plate using screws to 

guarantee proper interface shear displacement while the 

platform was descending 1.0 mm/min. The load and 

corresponding displacement were recorded by a load cell 

and a linear variable differential transformer (LVDT),  

Table 1 Materials used in the experimental program (Chen et al. 2020) 

Properties Values 

Soil sample 

Specific gravity 2.705 

Natural water content (%) 30-90 

Liquid limit (%) 58.1 

Plasticity limit (%) 28.6 

Cement 

Type P.O 42.5 

Specific gravity (t/m³) 3.0-3.2 

Compressive strength (MPa) ≥42.5 (28-day) 

Normal consistency (%) 27 

GFRP reinforcement 

Type GFRP tendon 

Rib spacing (mm) 10.1 

Tensile strength (MPa) 466 

Outer diameter (mm) 16.8 

Inner diameter (mm) 15 

Young’s modulus (GPa) 40 

Table 2 Influence variables with all levels used in the experimental project 

Influence factor 
Number of 

levels 
Magnitude Minimum Maximum Mean 

Water content Cw (%) 3 50, 70, 90 50 90 70 

Cement content Cc (%) 3 6, 18, 30 6 30 18 

Curing duration Tc (days) 3 7, 14, 28 7 28 16.3 

Slip displacement Sp (mm) 15 0.5,1,1.5,2,2.5,3,3.5,5,7,9,11,13,15,17,20 0.5 20 7.4 
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respectively. The loading process was ended as soon as the 

platform got a 20-mm displacement which sufficiently led 

to a complete detachment between the cemented soils and 

tendon (Chen et al. 2018). Eventually, the pullout strength 

can be calculated at 15 interface slip distances, shown in 

Appendix. 

 

 

3. Machine learning methods 
 

3.1 Back propagation neural network 

 

The relationships between inputs (affecting variables) 

and outputs (interface bond strength) in this case were 

modeled using an artificial neural network. Generally, 

multiple inputs are corresponding to one single output in a 

neuron and neurons are divided into groups in each layer in 

a neural network (Xu et al. 2020, Cai et al. 2021). The 

neural network employs interlinked neurons to model the 

functional relationships between inputs and outputs. The 

 

 

equation below represents each neuron which is seen as a 

calculation cell 

𝑦 = max(0,∑ 𝑤𝑖𝑥𝑖
𝑖

+ 𝑏) (1) 

where 𝑦 and 𝑥𝑖 represent values of output and input in 

each neuron; 𝑤𝑖  is connection weight; 𝑏  denotes bias 

value. 

The Eqs. (2) and (3) below build a mapping between 

inputs and outputs 

ℎ𝑖 = max(0,𝑊𝑖 · ℎ𝑖−1 + 𝑏𝑖) for 1 ≤ 𝑖 ≤ 𝐿, and ℎ0 = 𝑥 (2) 

𝑦 = max(0, 𝑉 · ℎ𝐿) (3) 

where 𝐿  represents the layer numbers; matrices 

𝑊1, …𝑊𝐿 , 𝑉, and vectors 𝑏1, … 𝑏𝐿 are model parameters 

got from the dataset.  

Each network is comprised of an input layer, an output 

layer, and a few hidden layers. As mentioned above, the 

number of hidden layers and number of neurons in each 

 
Fig. 2 Setup of pullout cell: (a) diagram of cross-sectional elevation, (b) 3D view of cell; and (c) diagram of cross-sectional 

plan (Chen et al. 2020) 

 

Fig. 3 Pullout loading equipment: (a) diagram of setup; and (b) view in the lab (Chen et al. 2020) 
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hidden layer are two major hyperparameters of ANN in this 

study. Owing to the significant influence of ANN 

configuration on prediction accuracy, seeking the optimal 

hyperparameters of ANN is essential. Thereby, this study 

adopts the PSO algorithm to automatically search the 

optimal hyperparameters. After determining the model 

configuration, the output of the former layer gives value to 

the input of the latter one. Fig. 4(a) presents a classic ANN 

framework. It is named the feed‐forward type of network 

because the computation only goes on along the direction 

forward. In the output layer, the following active function 

was used mainly due to its superior performance (Zhang et 

al. 2020) 

f(x) =
2

1 + exp(−x)
− 1 (4) 

Back propagation (BP) is a training procedure for ANN 
optimisation and its operation mode is schematically 
presented in Fig. 4(b). Errors between predicted and 
calculated output values are computed by the network in 
each operation. These errors are propagated backward in 
several iterations. The iteration and adjustment of their 
weights are conducted and the mean square error (MSE) 
between expected and observed outputs is effectively 
reduced in this process (Zhang and Wang 2019, Shi et al. 
2020). In the steepest gradient descent principle employed 
here, weights are updated according to the error gradient 
directly, i.e. 

Δ𝑤𝑛 = 𝛼Δ𝑤𝑛−1 − 𝜂
𝜕𝐸

𝜕𝑤
 (5) 

where 𝑤  means the weight between two neurons; Δ𝑤𝑛 

and Δ𝑤𝑛−1 represent the variation according to the weight 

when it iterates 𝑛  and 𝑛 − 1  times; 𝛼  and 𝜂  are the 

momentum factor and learning rate. 

The final connection weights are fixed upon finishing 

the training procedure. Moreover, new input modes will be 

attained by the network to produce corresponding output 

and mapping. Among all these parameters, the connection 

weights, bias values, the amount of hidden layers and 

neurons in each layer directly influence the function of 

BPNN which will be tuned by PSO. 

 

3.2 Baseline models 
 

The PSO-BPNN model was compared with LR and 

MLR to evaluate their forecast ability. The LR model with 

several predictive variables is shown in Eq. (5) (Hosmer Jr 

et al. 2013). 

𝑙𝑛
𝑝

1 − 𝑝
= 𝑏0 +∑𝑏𝑘𝑥𝑘

𝑛

𝑘=1

 (6) 

where 𝑥𝑘 is an independent and 𝑝 is a dependent variate; 

𝑏0 and 𝑏𝑘 are constant coefficients. Eq. (6) presents the 

relationship between the output variable 𝑌 and multiple 

predictive variables 𝑥𝑛 in the MLR model (Nathans et al. 

2012, Sun et al. 2019). 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽1𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 (7) 

where 𝛽1, … , 𝛽𝑛 denote the regression coefficients. 

 

3.3 Particle swarm optimization 
 

Hyperparameters of BPNN are adjusted by PSO which 

is a global optimisation algorithm. One particle within the 

searching scope represents one possible candidate solution 

in PSO. Specifically, the above-mentioned two 

hyperparameters are assumed as the particles of the PSO 

algorithm. According to the PSO algorithm, the number of 

hidden layers will be set as 1, 2, and 3, respectively. Then, 

the number of neurons in each hidden layer will be tuned 

within limited iterations (50 in this study), aiming at 

achieving the minimum root-mean-square error (RMSE) 

value on the validation set (section 3.4). It is noted that the 

empirical scope of the number of neurons in each hidden 

layer is ranging from 1 to 20 and the initial value is set as 

10 in this study. During the tuning process, a particle’s 

orientation is optimised based on its preceding best position 

and the present best position of the rest of the swarm which 

can be translated into 

𝑣𝑖𝑑
𝑡+1 = 𝑤 × 𝑣𝑖𝑑

𝑡 + 𝐶1 × 𝑟1𝑖 × (𝑝𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) + 𝐶2 × 𝑟2𝑖

× (𝑔𝑏𝑒𝑠𝑡𝑖𝑑 − 𝑥𝑖𝑑
𝑡 ) (8) 

𝑥𝑖𝑑
𝑡+1 = 𝑥𝑖𝑑

𝑡 + 𝑣𝑖𝑑
𝑡+1 (9) 

where 𝑑 means the dimension of the searching scope; 𝑣𝑖𝑑
𝑡  

and 𝑣𝑖𝑑
𝑡+1 are the velocities of particle i when it iterates t 

and t+1 times; 𝑥𝑖𝑑
𝑡  and 𝑥𝑖𝑑

𝑡+1  are the coordinates of 

particle i when it iterates t and t+1 times; 𝑝𝑏𝑒𝑠𝑡𝑖𝑑 and 

𝑔𝑏𝑒𝑠𝑡𝑖𝑑 are the best given location of the particle and the 

best given location of the whole swarm; 𝑤 represents the 

original weights; 𝐶1 and 𝐶2 are acceleration factors (the 

value is usually 2); 𝑟1𝑖 and 𝑟2𝑖 are two values picked from 

0 to 1 randomly.  

It is noted that PSO fails to provide the highest 

prediction accuracy if the program is carried out for only 

one time owing to its inherent stochastic properties. Several 

run times are conducted and the statistical outcomes are 

compared to verify the feasibility of the proposed procedure. 

In this paper, the results of only one run time are presented. 

 

3.4 Cross validation and performance evaluation 
measure 

 

Small data sets leading to overfitting problems is a 

common issue that could be solved by employing 10-fold 

cross-validation (CV) (Cawley and Talbot 2010, Alam et al. 

2020). Specifically, the hyperparameters are adjusted on a 

randomly segmented training set (the external training set) 

comprising seventy percent of the samples (Hsu et al. 2003). 

Moreover, the external training set is segmented into a 

validation set (comprising ten percent of the external 

training data) and an internal training set (comprising ninety 

percent of the external training data). PSO seeks optimum 

BPNN hyperparameters on the internal training set. It also 

computes the RMSE of the validation set to assess the 

characteristics of the model. This procedure is duplicated 

ten times to attain ten RMSE values. Model  
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hyperparameters with the minimum RMSE values are the 

prime ones and will be chosen to configurate the ANN 

model. The procedure of BPNN model training by 10-fold 

CV and PSO is shown in Fig. 5.  

In this research, the root mean square error, correlation 

coefficient (R), mean absolute error (MAE), and mean 

absolute percentage error (MAPE) employed to assess the 

ML models’ characteristics are defined as 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑦𝑖

∗ − 𝑦𝑖)
2

𝑁

𝑖=1

 (10) 

𝑅 =
𝛴𝑖−1
𝑁 (𝑦𝑖

∗ − 𝑦∗̅̅ ̅)(𝑦𝑖 − �̅�)

√𝛴𝑖=1
𝑁 (𝑦𝑖

∗ − 𝑦∗̅̅ ̅)2√𝛴𝑖=1
𝑁 (𝑦𝑖 − �̅�)2

 (11) 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑|

𝑦𝑖
∗ − 𝑦𝑖
𝑦𝑖

|

𝑛

𝑖=1

 (12) 

 

 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦𝑖

∗ − 𝑦𝑖|

𝑛

𝑖=1

 (13) 

where 𝑁 means the number of samples in the dataset; 𝑦𝑖
∗ 

denotes the forecasted output of ML models; 𝑦𝑖  denotes 

the real output in the dataset;  𝑦∗̅̅ ̅ represents the forecasted 

mean value, and �̅� represents the real mean value in the 

dataset. 

 

 

4. Results and discussion 
 
4.1 Results of the pullout test 
 
Fig. 6 presents the ultimate interface bond strengths of 

7, 14, and 28-day with varying cement and water contents. 

The ultimate strength was positively correlated to Cc. As Cc 

increased from 6% to 30%, the bond strength improved 

approximately 54 times, reaching 3879.40 kPa (Cw =50%,  

  
(a) T=60°C (b) T=80°C 

Fig. 4 Architecture of neural networks 

 

Fig. 5 BPNN model training tuned by PSO 
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TC =28 days). This was attributed to higher cement content 

resulting in more hydraulic reactions and consequently 

increased cementitious products generated within the 

cement-soil matrix. But upon water content raising to 90%, 

the strength only increased 26 times, reaching 745.30 kPa. 

That is, water content negatively affected the ultimate 

bonding performance. In addition, when Cc was 30% and TC 

was 28 days, the strength decreased by approximately 81%, 

from 3879.40 to 745.30 kPa, as Cw rose from 50% to 90%. 

This reduction was due to extra water leading to insufficient 

hydration reaction. However, the strength only decreased by 

61% when Cc is 6%. These phenomena could be concluded 

that both Cw and Cc had a stronger influence on the ultimate 

strength when the water-cement ratio was low. This was 

ascribed to the fact that extra water led to pore pressure in 

the curing time which resulted in a porous interface 

microstructure (Å hnberg 2006, Zhang 2014). 

The 28-day bond-slip curves of specimens with varying 

Cw and Cs are presented in Fig. 7. Due to the existence of 

the ribs, tendons and cemented soil were interlocked tightly 

so that their relative motion was constrained with each other. 

Thereby, the elastic stage (the positive proportion between 

Tp and Sp) was initially obtained when tendons started to 

 

 

 

move (Wu et al. 2019, Abedini and Zhang 2021, Zhang et 

al. 2022). Besides, the initial plastic zones and shear failure 

surfaces were shaped and extended during this stage. The 

elasticity and corresponding ultimate strength were 

negatively affected by the water content. The 2.5 mm slip 

distance and 2016 kPa peak strength were obtained for 

sample C18W50T28. However, the values were decreased 

to 0.5 mm and 275 kPa, respectively when the water content 

increased to 90% (C18W90T28). This was attributed to 

extra water leading to the formation of pores inside the 

cemented soil and insufficient cementitious products 

generated. It weakened the cement stabilization and 

consequently increased the level of the soil fragments’ 

detachment and lowered the shear capacity of the cemented 

soil matrix. Similarly, the increase of cement content 

enhanced the elasticity and ultimate strength of GFRTS, 

which was presented in Fig. 7(b).  

The Tp was gradually reduced to residual strength (the 

first trough) when the slip distance increased to around 9 

mm. During this process, the soil fragments were gradually 

detached to fill the space between the ribs, reducing the 

effective rib height, diminished interlock effect, and 

consequently lowered Tp. The residual strength was affected  

 

Fig. 6 Ultimate interface bond strength of the pullout specimens 

  
(a) Curves for specimens (varying Cw and 18% Cc) (b) Curves for specimens (varying Cc and 70% Cw) 

Fig. 7 Bond-slip curves for different specimens at 28 curing days 
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positively by Cc and negatively by Cw. As Cc grown from 

6% to 30%, the residual strength increased from 2.63 kPa to 

502.89 kPa (Cw =70%, Tc=28 days). Nevertheless, it 

witnessed a reduction from 607.44 kPa to 32.83 kPa as Cw 

grew from 50% to 90% (Cc =18%, Tc=28 days). In addition, 

the second peak strength (at approximately 13 mm slip 

distance) appeared in samples with cement content over 

18% or water content under 70%. This phenomenon was 

due to the regenerated smaller plastic zones and shear 

failure surfaces because of the reduced rib height (Chen et 

al. 2020). It further verified the effectiveness of a high 

cement-water ratio on the cemented soil’s robustness. In 

conclusion, samples with high Cc or low Cw possessed 

enhanced elasticity, ultimate strength, and residual bond 

strength, which were all positively affected by cement 

content and negatively influenced by water content. 

 

4.2 Modelling results for Tp 
 

4.2.1 Hyperparameter tuning 
The BPNN with the optimum hyperparameters is picked 

from the 8th fold with the smallest RMSE employing PSO 

and 10-fold CV, as illustrated in Fig. 8(a). Fig. 8(b) presents 

the RMSE convergency and hyperparameters adjusting by 

 

 

 

PSO. It shows that the RMSE reached a minimum at the 

26th iteration in the 8th fold and stayed constant at the 

remaining iterations. The attained optimal BPNN 

framework comprises a hidden layer with 10 neurons. co 

Moreover, in the 70% training dataset, the bias values and 

connection weights of BPNN with constant framework 

were adjusted by PSO. Eventually, the adjusted BPNN 

model with a 3-10-1 framework (3 neurons in the input 

layer; 10 in the hidden layer; 1 in the output layer) was 

employed to forecast bond strength. 

 

4.2.2 Performance of PSO-BPNN for Tp modeling  

Fig. 9 presents the comparison of forecasted and real Tp 

for testing and training datasets with the optimal BPNN. 

Minor errors were found in both sets, thereby such PSO-

BPNN model was dependable to assess Tp. Besides, 

computed correlation coefficients were applied to evaluate 

the relationship between the forecasted and measured Tp 

outcome, as presented in Fig. 10. The coefficients were 

0.9402 and 0.9080 for training and test sets respectively 

displaying that this model is reliable again. Moreover, the 

RMSE/R value for both sets was near proving that the 

fitting was moderate without overfitting problems. 

  
(a) RSME values from 10 validation sets (b) RSME convergency at the 26th iteration 

Fig. 8 Hyperparameters tuning for FS prediction 

  
(a) Training set (b) Test set 

Fig. 9 Difference between forecasted and measured Tp 
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Fig. 10 Scatter plot of simulated and actual FS for 

training and test sets 

 

 
(a) 

 

(b) 

Fig. 11 Performance evaluation of three models by (a) 

Boxplot and (b) Taylor diagram 

 

 

Furthermore, the comparison of forecasting ability 

between the PSO-BPNN model and benchmark models 

including MLR and LR was conducted in this research. The 

diversity between the results of forecasted and laboratorial  

 

Fig. 12 The relative importance of each variable on Tp of 

GTRCS 

 

Table 4 Evaluation of three ML models on the bond 

strength test set 

Evaluation  

index 

Model 

BPNN LR MLR 

RMSE (kPa) 239.11 402.00 370.83 

R 0.9080 0.7692 0.7449 

 

 

Tp employs a box plot for MLR, R, and BPNN as shown in 

Fig. 11(a). The BPNN model had the smallest median value 

(the red line) and the narrowest interquartile range (the 

space between the top and bottom blue lines) compared to 

the other two. It represented that this model had the lowest 

prediction error among all three models. In addition, the 

high excellence of BPNN in forecasting Tp was also 

illustrated by the lowest upper limit (the black line), 

although several outliers existed. Moreover, the integration 

of three indices in model evaluation (RMSE, R, and 

standard deviation) using polar coordinates is presented in 

Fig. 13(b). Similarly, the BPNN model performed the best 

again for it was the nearest to the “actual” point in the 

Taylor diagram. It has the smallest RMSE, the largest R 

value, and minimum standard deviation values among all 

three models. Various forecasting models’ operation 

statistics in the testing set are listed in Table 3. These 

comparison consequences denote that using the PSO-BPNN 

model is an optimal method to forecast the Tp of GTRCS. 

 

4.3 Variable significance for bond strength 
 

Fig. 12 presents the significance ranking of affecting 

variables employing SA. The significance score of cement 

content was 33.93%, making it the most significant 

affecting variable, higher than that of water content and slip 

distance which was 30.66% and 26.22%, respectively. The 

discovery mentioned above that Tp development was 

extremely susceptible to Cc and Cw was consistent with such 

ranking (Singh et al. 2011, Tsai et al. 2019). Moreover, the 

significance score of curing time was only 9.18%, namely 

the lowest one. Consequently, this significance metric 

quantitatively analyses these input variables which offers an 

outstanding way to comprehend the development of Tp.  
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5. Conclusions 
 

In this study, the interface bond performance between 
the cemented soil matrix and GFRP tendons was 
investigated by conducting pullout tests. Based on the 
testing results, a PSO-BPNN model was trained to predict 
the bond strength and the forecasted values were consistent 
with the generated results. The concluding remarks were 
depicted as follows.  
 The ultimate interface bond strength was 
positively influenced by cement content and negatively by 
water content. Sample C30W50T28 showed the largest 
ultimate strength which was 3879.40 kPa. Besides, high 
cement to water ratio enhanced the robustness of GTRCS to 
withstand detachment of soil matrix which led to increased 
elasticity and residual strength. 
 The PSO-BPNN model was built in a framework 
where there were 3 neurons in the input layer, 10 in the 
hidden layer, and 1 in the output layer. Its RMSE reached a 
minimum value at the 26th iteration in the 8th fold. The 
accuracy of the PSO-BPNN model in forecasting bond 
strength was reflected in a lower RMSE (239.11 kPa) and 
higher R (0.9080) compared with MLR and LR. Besides, its 
correlation coefficients were 0.9402 and 0.9080 for training 
and test sets respectively, displaying its reliability. 
 The significance ranking of variables showed that 

cement content was the most significant followed by water 

content and slip distance, and curing time was of the least 

significance. The results also complied with the 

experimental findings. 

For limited statistics will strongly affect the forecast 

capacity of PSO-BPNN models, a larger database is needed 

in the successive research. Moreover, the exploration of 

more variables is essential such as the tendon type, soil 

components, etc. Other progressive or evolved AI 

technologies should also be applied to enhance usability, 

efficiency, and correctness. 

 

 

Acknowledgements 
 

The research described in this paper was financially 
supported by the National Natural Science Foundation of 
China (grant numbers 51908201 and 51978254), Natural 
Science Foundation of Hunan Province (grant number 
2020JJ5024), and the Key R&D Project of Hunan Province 
Intelligent Disaster Prevention and Mitigation and 
Ecological Restoration in Civil Engineering (grant number 
2020SK2109). Meanwhile, this work was supported by 
Hunan Key Laboratory of Intelligent Disaster Prevention 
and Mitigation and Ecological Restoration in Civil 
Engineering, Hunan Provincial Engineering Research 
Center, Catastrophe and Reinforcement of Dangerous 
Engineering Structures. This research was also supported by 
Academic Research Council of Australia Linkage Projects 
for Asset Intelligence: Maximising Operational 
Effectiveness for Digital Era (Grant No. LP180100222). 

 
 

References 
 

Abedini, M. and C. Zhang (2021), “Dynamic performance of 

concrete columns retrofitted with FRP using segment pressure 

technique”, Compos. Struct., 260, 113473. 

https://doi.org/10.1016/j.compstruct.2020.113473. 

Abedini, M. and Zhang, C. (2021), “Dynamic vulnerability 

assessment and damage prediction of RC columns subjected to 

severe impulsive loading”, Struct. Eng. Mech., 77(4), 441-461. 

https://doi.org/10.12989/sem.2021.77.4.441. 

Abedini, M., Zhang, C., Mehrmashhadi, J. and Akhlaghi, E 

(2020), “Comparison of ALE, LBE and pressure time history 

methods to evaluate extreme loading effects in RC column”, 

Structures, 28, 456-466. 

https://doi.org/10.1016/j.istruc.2020.08.084. 

Abido, M.A. (2002), “Optimal power flow using particle swarm 

optimizatio”, Int. J. Elec. Power & Energy Syst., 24(7), 563-

571. https://doi.org/10.1016/S0142-0615(01)00067-9. 

Å hnberg, H. (2006), Strength of Stabilised Soil-A Laboratory 

Study on Clays and Organic Soils Stabilised with different 

Types of Binder. Avd. för Byggnadsmekanik / Department of 

Construction Sciences, LTH, Lund, Sweden. 

Alam, Z., Sun, L., Zhang, C., Su, Z. and Samali, B. (2020), 

“Experimental and numerical investigation on the complex 

behaviour of the localised seismic response in a multi-storey 

plan-asymmetric structure”,  Struct. Infrastruct. Eng., 17(1), 

86-102. https://doi.org/10.1080/15732479.2020.1730914. 

Alam, Z., Zhang, C. and Samali, B. (2020), “Influence of seismic 

incident angle on response uncertainty and structural 

performance of tall asymmetric structure”, Struct. Des. Tall 

Spec. Build., 29(12), e1750. https://doi.org/10.1002/tal.1750 

Alam, Z., Zhang, C. and Samali, B. (2020), “The role of 

viscoelastic damping on retrofitting seismic performance of 

asymmetric reinforced concrete structures”, Earthq. Eng. Eng. 

Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-

x. 

Babasaki, R. (1996), “Japanese Geotechnical Society technical 

committee report-Factors influencing the strength of improved 

soil”, Proceedings of the 2nd Int. Conf. Ground Improvement 

Geosystems-Grouting and Deep Mixing-, Tokyo, Japan, May. 

Cai, K., Chen, H., Ai, W., Miao, X., Lin, Q. and Feng, Q. (2021), 

“Feedback convolutional network for intelligent data fusion 

based on near-infrared collaborative IoT technology”, IEEE T. 

Ind. Inform., 17, 1123-

1135. https://doi.org/10.1109/TII.2021.3076513. 

Cawley, G.C. and Talbot, N. L. (2010), “On over-fitting in model 

selection and subsequent selection bias in performance 

evaluation”, J. Machine Learning Research, 11(1), 2079-2107. 

https://dl.acm.org/doi/10.5555/1756006.1859921. 

CECS147, C. (2016), Technical specification for soil mass with 

reinforced cement soil pile and anchors, China Planning Press, 

Beijing, China. 

Chandwani, V., Agrawal, V., Nagar, R. and Signh, S. (2015), 

“Modeling slump of ready mix concrete using genetic 

algorithms assisted training of Artificial Neural Networks”, Int. 

J. Technol., 42(2), 885-893. 

https://doi.org/10.1016/j.eswa.2014.08.048. 

Chen, C., Zhang, G., Zornberg, J. G., Morsy, A. M., & Huang, J. 

(2020), “Interface bond behavior of tensioned glass fiber-

reinforced polymer (GFRP) tendons embedded in cemented 

soils”, Construction and Building Materials, 263, 120-132. 
https://doi.org/10.1016/j.conbuildmat.2020.120132 

Chen, C., Zhang, G., Zornberg, J.G., Morsy, A.M., Zhu, S. and 

Zhao, H. (2018), “Interface behavior of tensioned bars 

embedded in cement-soil mixtures”, Constr. Build. Mater., 186, 

840-853. https://doi.org/10.1016/j.conbuildmat.2018.07.211. 

Chew, S.H., Kamruzzaman, A.H.M. and Lee, F.H. (2004), 

“Physicochemical and engineering behavior of cement treated 

clays”, J. Geotech. Geoenviron. Eng., 130(7), 696-706. 

608

https://doi.org/10.1016/j.compstruct.2020.113473
https://doi.org/10.1016/j.istruc.2020.08.084
https://www.sciencedirect.com/science/journal/01420615
https://doi.org/10.1016/S0142-0615(01)00067-9
https://doi.org/10.1080/15732479.2020.1730914
https://doi.org/10.1002/tal.1750
https://doi.org/10.1109/TII.2021.3076513
https://xueshu.baidu.com/s?wd=author%3A%28V%20Chandwani%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://xueshu.baidu.com/s?wd=author%3A%28V%20Agrawal%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://xueshu.baidu.com/s?wd=author%3A%28R%20Nagar%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://www.researchgate.net/journal/International-Journal-of-Technology-2086-9614
https://www.researchgate.net/journal/International-Journal-of-Technology-2086-9614
https://doi.org/10.1016/j.eswa.2014.08.048
https://doi.org/10.1016/j.conbuildmat.2020.120132
https://doi.org/10.1016/j.conbuildmat.2018.07.211


 

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil 

https://ascelibrary.org/doi/abs/10.1061/(ASCE)10900241(2004)

130:7(696). 

Fan, P., Deng, R., Qiu, J., Zhao, Z.. and Wu, S. (2021), “Well 

logging curve reconstruction based on kernel ridge regression”, 

Arabian J. Geosci., 14(16), 1-10. 

https://doi.org/10.1007/s12517-021-07792-y. 

Feng, W., Wang, Y., Sun, J., Tang, Y., Wu, D., Jiang, Z., Wang, J. 

and Wang, X. (2021), “Prediction of thermo-mechanical 

properties of rubber-modified recycled aggregate concrete”, ., 

318, 125970. 

https://doi.org/10.1016/j.conbuildmat.2021.125970. 

Fernández-Martínez, J. and Fernández-Muñiz, Z. (2020), “The 

curse of dimensionality in inverse problems”, J. Comput. Appl. 

Math., 369, 112571. 

https://doi.org/10.1016/j.cam.2019.112571. 

Gholipour, G., Zhang, C. and Mousavi, A. A. (2020), “Nonlinear 

numerical analysis and progressive damage assessment of a 

cable-stayed bridge pier subjected to ship collision”, Mar. 

Struct., 69, 102662. 

https://doi.org/10.1016/j.marstruc.2019.102662. 

Han, J. (2014), Principles and Practice of Ground Improvement, 

John Wiley & Sons, Inc., Hoboken, New Jersey, United States. 

Horpibulsuk, S., Miura, N. and Nagaraj, T.S. (2003), “Assessment 

of strength development in cement-admixed high water content 

clays with Abrams' law as a basis”, Geotechnique, 53(4), 439-

444. https://doi.org/10.1680/geot.2003.53.4.439. 

Hosmer Jr, D.W., Lemeshow, S. and Sturdivant, R.X. (2013), 

Applied logistic regression, John Wiley & Sons, Inc., Hoboken, 

New Jersey, United States. 

Hou, L., Wu, S., Zhang, G., Tan, Y. and Wang, X. (2021), 

“Literature review of digital twins applications in construction 

workforce safety”, Appl. Sci., 11(1), 339. 

https://doi.org/10.3390/app11010339. 

Hsu, C.W., Chang, C.C. and Lin, C.J. (2003), “A practical guide to 

support vector classification”, Technical report, Department of 

Computer Science, National Taiwan University. 

Ju, Y., Shen, T. and Wang, D. (2020), “Bonding behavior between 

reactive powder concrete and normal strength concrete”, 

Constr. Build. Mater., 242, 118024 

https://doi.org/118010.111016/j.conbuildmat.112020.118024.  

Kitazume, M. and Terashi, M. (2013), The Deep Mixing Method, 

CRC Press/Balkeman, Leiden, Netherlands. 

Li, J., Qin, Q., Sun, J., Ma, Y. and Li, Q. (2020), “Mechanical and 

conductive performance of electrically conductive cementitious 

composite using graphite, steel slag, and GGBS”, Struct. 

Concrete, early view.  https://doi.org/10.1002/suco.202000617 

Liu, J., Wu, C., Wu, G. and Wang, X. (2015), “A novel 

differential search algorithm and applications for structure 

design”, Appl. Math. Comput., 268, 246-269. 
https://doi.org/10.1016/j.amc.2015.06.036. 

Luo, J., Li, M., Liu, X., Tian, W., Zhong, S. and Shi, K. (2020), 

“Stabilization analysis for fuzzy systems with a switched 

sampled-data control”, J. Franklin Inst., 357(1), 39-58. 

https://doi.org/10.1016/j.jfranklin.2019.09.029. 

Medvedeva, M.A., Simos, T.E. and Tsitouras, C. (2020), 

“Variable step-size implementation of sixth-order Numerov-

type methods”, Math. Method. Appl. Sci., 43(3), 1204-1215. 
https://doi.org/10.1002/mma.5929. 

Mou, B. and Bai, Y. (2002), “Experimental investigation on shear 

behavior of steel beam-to-CFST column connections with 

irregular panel zone”, Eng. Struct., 168, 487-504. 

https://doi.org/10.1016/j.engstruct.2018.04.029. 

Nathans, L.L., Oswald, F.L. and Nimon, K. (2012), “Interpreting 

multiple linear regression: A guidebook of variable 

importance”, Pract. Assessment, Res. Eval., 17(9), 1-19. 

https://doi.org/10.7275/5fex-b874. 

Qin, C., Tao, J., Shi, H., Xiao, D., Li, B. and Liu, C. (2020), “A 

novel Chebyshev-wavelet-based approach for accurate and fast 

prediction of milling stability”, Precision Eng., 62, 244-255. 

https://doi.org/10.1016/j.precisioneng.2019.11.016. 

Shen, S.L., Wang, Z.F., Yang, J. and Ho, C.E. (2013), 

“Generalized approach for prediction of jet grout column 

diameter”, J. Geotech. Geoenviron. Eng., 139(12), 2060-2069. 

https://ascelibrary.org/doi/full/10.1061/%28ASCE%29GT.1943

-5606.0000932. 

Shi, J., Lu, Y. and Zhang, J. (2020), “Approximation Attacks on 

Strong PUFs”, IEEE T. Comput.-Aided Des. Integrated Circuit. 

Syst., 39(10), 2138-2151. 
https://doi.org/10.1109/TCAD.2019.2962115. 

Singh, V., Gu, N. and Wang, X. (2011), “A theoretical framework 

of a BIM-based multi-disciplinary collaboration platform”, 

Autom. Constr., 20(2), 134-144. 
https://doi.org/10.1016/j.autcon.2010.09.011. 

Sun, J., Ma, Y., Li, J., Zhang, J., Ren, Z. and Wang, X. (2021), 

“Machine learning-aided design and prediction of cementitious 

composites containing graphite and slag powder”, J. Build. 

Eng., 43, 102544. https://doi.org/10.1016/j.jobe.2021.102544. 

Sun, J., Wang, X., Zhang, J., Xiao, F., Sun, Y., Ren, Z., Zhang, G., 

Liu, S. and Wang, Y. (2021), “Multi-objective optimisation of a 

graphite-slag conductive composite applying a BAS-SVR 

based model”, J. Build. Eng., 44, 103223. 

https://doi.org/10.1016/j.jobe.2021.103223. 

Sun, J., Wang, Y., Yao, X., Ren, Z., Zhang, G., Zhang, C., Chen, 

X., Ma, W. and Wang, X. (2021), “Machine-learning-aided 

prediction of flexural strength and ASR expansion for waste 

glass cementitious composite”, Appl. Sci., 11(15), 6686. 

https://doi.org/10.3390/app11156686. 

Sun, Y.,  Li, G., Zhang, J., Sun, J. and Xu, J. (2020), 

“Development of an ensemble intelligent model for assessing 

the strength of cemented paste backfill”, Adv. Civil Eng., 2020, 

1-6. https://doi.org/10.1155/2020/1643529. 

Sun, Y., Zhang, J., Li, G., Ma, G., Huang, Y., Sun, J. and Nener, 

B. (2019), “Determination of Young's modulus of jet grouted 

coalcretes using an intelligent model”, Eng. Geol., 252, 43-53. 
https://doi.org/10.1016/j.enggeo.2019.02.021. 

Sun, Y., Zhang, J., Li, G., Wang, Y., Sun, J. and Jiang, C. (2019), 

“Optimized neural network using beetle antennae search for 

predicting the unconfined compressive strength of jet grouting 

coalcretes”, Int. J. Numer. Anal. Method. Geomech., 43(4), 

801-813. https://doi.org/10.1002/nag.2891. 

Tepfers, R., et al. (2000), Bond of reinforcement in concrete, 

International Federation for Structural Concrete (fib), 

Lausanne, Switzerland. 

Timoney, M.J. and McCabe, B.A. (2017), “Strength verification of 

stabilised soil-cement columns: A laboratory investigation of 

the Push-In Resistance Test (PIRT)”, Can. Geotech. J., 54(6), 

789-805. https://doi.org/10.1139/cgj-2016-0230. 

Timoney, M.J., McCabe, B.A. and Bell, A.L. (2012), 

“Experiences of dry soil mixing in highly organic soils”, 

Proceedings of the Institution of Civil Engineers-Ground 

Improvement, 165(1), 3-14. 
https://doi.org/10.1680/grim.2012.165.1.3. 

Tsai, Y.H., Wang, J., Chien, W.T., Wei, C.Y., Wang, X. and 

Hsieh, S.H. (2019), “A BIM-based approach for predicting 

corrosion under insulation”, Automat. Constr., 107, 102923. 
https://doi.org/10.1016/j.autcon.2019.102923. 

Wang, J., Dai, Q. and Si, R. (2022), “Experimental and numerical 

investigation of fracture behaviors of steel fiber–reinforced 

rubber self-compacting concrete”, J. Mater.Civil Eng., 34(1), 

04021379. https://doi.org/10.1061/(ASCE)MT.1943-

5533.0004010. 

Wang, J., Dai, Q., Si, R. and Guo, S. (2018), “Investigation of 

properties and performances of Polyvinyl Alcohol (PVA) fiber-

609

https://www.sciencedirect.com/science/journal/09500618
https://doi.org/10.1016/j.conbuildmat.2021.125970
https://www.sciencedirect.com/science/journal/03770427
https://www.sciencedirect.com/science/journal/03770427
https://xueshu.baidu.com/s?wd=author%3A%28G%20Gholipour%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://xueshu.baidu.com/s?wd=author%3A%28AA%20Mousavi%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://www.sciencedirect.com/science/journal/09518339
https://www.sciencedirect.com/science/journal/09518339
https://doi.org/10.1016/j.marstruc.2019.102662
https://doi.org/10.1680/geot.2003.53.4.439
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://doi.org/118010.111016/j.conbuildmat.112020.118024
https://doi.org/10.1002/suco.202000617
https://doi.org/10.1016/j.amc.2015.06.036
https://doi.org/10.1016/j.jfranklin.2019.09.029
https://doi.org/10.1002/mma.5929
https://www.sciencedirect.com/science/journal/01410296
https://doi.org/10.1016/j.engstruct.2018.04.029
https://doi.org/10.1016/j.precisioneng.2019.11.016
https://doi.org/10.1016/j.autcon.2010.09.011
https://doi.org/10.1016/j.jobe.2021.102544
https://doi.org/10.1016/j.jobe.2021.103223
https://doi.org/10.1155/2020/1643529
https://doi.org/10.1016/j.enggeo.2019.02.021
https://doi.org/10.1002/nag.2891
https://doi.org/10.1139/cgj-2016-0230
https://doi.org/10.1680/grim.2012.165.1.3
https://doi.org/10.1016/j.autcon.2019.102923
https://doi.org/10.1061/(ASCE)MT.1943-5533.0004010
https://doi.org/10.1061/(ASCE)MT.1943-5533.0004010


 

Genbao Zhang, Changfu Chen, Yuhao Zhang, Hongchao Zhao, Yufei Wang and Xiangyu Wang 

reinforced rubber concrete”, Constr. Build. Mater., 193, 631-

642. https://doi.org/10.1016/j.conbuildmat.2018.11.002. 

Wang, L.,  Yuan, J.,  Wu, C. and  Wang, X. (2019), “Practical 

algorithm for stochastic optimal control problem about 

microbial fermentation in batch culture”, Optim. Lett., 13(3), 

527-541. https://doi.org/10.1007/s11590-017-1220-z. 

Wang, L., Peng, Y., Xie, Y., Chen, B. and Du,Y. (2021), “A new 

iteration regularization method for dynamic load identification 

of stochastic structures”, Mech. Syst. Signal Pr., 156, 107586. 

https://doi.org/10.1016/j.ymssp.2020.107586. 

Wu, C., Wang, X., Chen, M. and Kim, M.J. (2019), “Differential 

received signal strength based RFID positioning for 

construction equipment tracking”, Adv. Eng. Inform., 42, 

100960. https://doi.org/10.1016/j.aei.2019.100960. 

Xie, W., Zhang, R., Zeng, D., Shi, K. and Zhong, S. (2020), 

“Strictly dissipative stabilization of multiple-memory Markov 

jump systems with general transition rates: A novel event-

triggered control strategy”, Int. J. Robust Nonlinear Control, 

30(5), 1956-1978. https://doi.org/10.1002/rnc.4856. 

Xu, D., Liu, Q., Qin,Y. and Chen, B. (2020), “Analytical approach 

for crack identification of glass fiber reinforced polymer–sea 

sand concrete composite structures based on strain 

dissipations”, Struct. Health Monit., 19(2), 1475921720974290. 

https://doi.org/10.1177/1475921720974290. 

Xu, D.S., Huang, M. and Zhou, Y. (2020), “One-dimensional 

compression behavior of calcareous sand and marine clay 

mixtures”, Int. J. Geomech., 20(9), 04020137. 
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001763. 

Xu, S., Wang, J., Shou, W., Ngo, T. and Wang, X. (2021), 

“Computer vision techniques in construction: a critical review”, 

Arch. Comput. Method. Eng., 28, 3383-3397. 
https://doi.org/10.1007/s11831-020-09504-3. 

Yan, F. and Lin, Z. (2016), “Bond behavior of GFRP bar-concrete 

interface: damage evolution assessment and FE simulation 

implementations”, Compos. Struct., 155, 63-76. 
https://doi.org/10.1016/j.compstruct.2016.07.078. 

Zhang, C. (2014), “Control Force Characteristics of Different 

Control Strategies for the Wind-Excited 76-Story Benchmark 

Building Structure”, Advances in Structural Engineering, 

17(4), 543-559. https://doi.org/10.1260/1369-4332.17.4.543 

Zhang, C. and H. Wang (2019), “Robustness of the active rotary 

inertia driver system for structural swing vibration control 

subjected to multi-type hazard excitations”, Appl. Sci., 9(20), 

4391. https://doi.org/10.3390/app9204391. 

Zhang, G., Chen, C., Li, K., Xiao, F., Sun, J., Wang, Y. and Wang, 

X. (2022), “Multi-objective optimisation design for GFRP 

tendon reinforced cemented soil”, Constr. Build. Mater., 320, 

126297. https://doi.org/10.1016/j.conbuildmat.2021.126297. 

Zhang, J., Huang, Y., Wang, Y. and Ma, G. (2020), “Multi-

objective optimization of concrete mixture proportions using 

machine learning and metaheuristic algorithms”, Constr. Build. 

Mater., 253, 119208. 

https://doi.org/10.1016/j.conbuildmat.2020.119208. 

Zhang, J., Sun, Y., Li, G., Wang, Y., Sun, J. and  Li, J. (2020), 

“Machine-learning-assisted shear strength prediction of 

reinforced concrete beams with and without stirrups”, Eng. with 

Comput., 1-15. https://doi.org/10.1007/s00366-020-01076-x. 

Zhang, W., Li, H., Li, Y., Liu, H., Chen, Y. and Ding, X. (2021), 

“Application of deep learning algorithms in geotechnical 

engineering: a short critical review”, Artif. Intell. Rev., 54, 

5633-5673. https://doi.org/10.1007/s10462-021-09967-1. 

Zhang, W., Wu, C., Zhong, H., Li, Y. and Wang, L. (2021), 

“Prediction of undrained shear strength using extreme gradient 

boosting and random forest based on Bayesian optimization”, 

Geosci. Frontiers, 12(1), 469-477. 

https://doi.org/10.1016/j.gsf.2020.03.007. 

Zhao, C., Zhong, S., Zhang, X., Zhong, Q.a and Shi, K. (2020), 

“Novel results on nonfragile sampled-data exponential 

synchronization for delayed complex dynamical networks”, Int. 

J. Robust Nonlinear Control, 30(10), 4022–

 4042. https://doi.org/10.1002/rnc.4975. 

Zhao, R., Zhang, L., Guo, B., Chen, Y., Fan, G., Jin, Z., Guan, X., 

and Zhu, J. (2021), “Unveiling substitution preference of 

chromium ions in sulphoaluminate cement clinker phases”, 

Compos. Part B: Eng., 222(14), 109092. 

https://doi.org/10.1016/j.compositesb.2021.109092. 

Zheng, J., Zhang, C. and Li, A. (2020), “Experimental 

investigation on the mechanical properties of curved metallic 

plate dampers”, Appl. Sci., 10(1), 269. 

https://doi.org/10.3390/app10010269. 

Zhu, J., Yang, K., Chen, Y., Fan, G., Zhang, L., Guo, B. and Zhao, 

R. (2021), “Revealing the substitution preference of zinc in 

ordinary Portland cement clinker phases: A study from 

experiments and DFT calculations”, J. Hazard. Mater., 409, 

124504. https://doi.org/10.1016/j.jhazmat.2020.124504. 
 

 
CC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

610

https://doi.org/10.1016/j.conbuildmat.2018.11.002
https://doi.org/10.1016/j.ymssp.2020.107586
https://doi.org/10.1016/j.aei.2019.100960
https://doi.org/10.1002/rnc.4856
https://doi.org/10.1177%2F1475921720974290
https://doi.org/10.1016/j.compstruct.2016.07.078
https://doi.org/10.1260%2F1369-4332.17.4.543
https://doi.org/10.3390/app9204391
https://doi.org/10.1016/j.conbuildmat.2021.126297
https://doi.org/10.1016/j.conbuildmat.2020.119208
https://doi.org/10.1016/j.gsf.2020.03.007
https://doi.org/10.1002/rnc.4975
https://www.sciencedirect.com/science/journal/13598368
https://doi.org/10.1016/j.compositesb.2021.109092
https://doi.org/10.3390/app10010269
https://doi.org/10.1016/j.jhazmat.2020.124504


 

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil 

Appendix 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specimen 
Cc 

(%) 

Cw 

(%) 

Tc 

(day) 

Sp (mm) 

0.5 1 1.5 2 2.5 3 3.5 5 7 9 11 13 15 17 20 

C06W50T0

7 
6 50 7 46.24 53.50 51.08 48.12 45.17 42.48 38.71 28.50 18.28 11.02 11.83 11.56 9.68 8.60 6.18 

C06W50T1

4 
6 50 14 37.37 52.69 52.42 51.35 50.27 48.66 46.24 38.44 27.42 23.93 23.12 23.12 22.58 19.89 18.55 

C06W50T2

8 
6 50 28 68.95 70.31 67.59 65.68 62.95 59.96 56.14 38.43 23.16 14.72 10.63 11.45 9.81 7.36 5.72 

C06W70T0

7 
6 70 7 3.80 6.73 7.02 7.02 6.73 6.44 6.14 4.39 3.51 2.93 2.93 2.93 2.63 2.34 2.34 

C06W70T1

4 
6 70 14 7.21 9.70 9.95 9.70 8.95 8.46 7.71 4.23 2.49 3.73 2.98 3.23 2.74 1.99 2.49 

C06W70T2

8 
6 70 28 5.27 9.07 9.95 9.36 8.19 7.31 6.14 4.10 2.63 2.63 2.93 2.93 2.34 1.76 2.05 

C06W90T0

7 
6 90 7 2.59 3.17 3.46 3.17 2.88 2.59 2.31 1.73 1.44 1.15 0.86 0.58 0.29 0.29 0.29 

C06W90T1

4 
6 90 14 28.18 26.80 24.87 23.21 21.28 19.89 17.96 16.03 14.64 10.78 11.88 11.33 9.95 10.22 8.57 

C06W90T2

8 
6 90 28 15.58 27.52 24.20 22.22 20.56 19.23 17.57 13.93 10.28 8.29 6.96 5.64 5.64 4.64 4.97 

C18W50T0

7 
18 50 7 459.48 649.16 674.23 683.22 674.77 636.07 569.03 388.35 234.37 206.85 227.83 226.20 181.50 135.72 129.45 

C18W50T1

4 
18 50 14 817.58 1381.70 1482.54 1501.62 1482.54 1436.21 1359.90 1060.12 596.83 463.29 547.78 588.66 501.45 337.93 280.70 

C18W50T2

8 
18 50 28 610.09 1305.07 1803.76 1976.17 2015.96 2005.35 1912.51 1498.71 901.88 607.44 708.24 763.94 705.59 578.26 480.12 

C18W70T0

7 
18 70 7 184.23 277.16 293.51 285.33 276.61 267.62 255.63 201.12 120.18 55.87 53.96 76.03 79.03 62.95 26.16 

C18W70T1

4 
18 70 14 206.55 291.39 327.38 346.10 345.23 327.96 301.34 192.51 98.59 96.55 134.29 143.36 98.89 53.83 64.95 

C18W70T2

8 
18 70 28 217.11 360.12 393.56 395.29 374.24 345.99 312.26 207.88 106.39 103.80 131.19 127.73 89.67 59.68 83.61 

C18W90T0

7 
18 90 7 67.75 147.06 183.89 165.88 155.12 147.86 142.49 126.62 101.89 62.64 48.39 48.66 50.27 47.85 38.44 

C18W90T1

4 
18 90 14 231.53 192.77 180.42 171.50 167.73 160.18 152.29 127.94 101.53 80.26 78.89 82.66 83.01 81.64 67.23 

C18W90T2

8 
18 90 28 275.21 220.83 204.25 191.32 180.04 167.44 162.80 135.61 100.80 78.58 55.04 47.08 46.09 41.45 32.83 

C30W50T0

7 
30 50 7 673.27 1367.74 1634.74 1758.03 1803.06 1788.66 1739.45 1391.30 895.25 620.65 657.82 733.74 673.53 570.39 438.98 

C30W50T1

4 
30 50 14 863.02 1882.96 2591.87 2989.76 2967.34 2802.02 2247.22 585.62 439.92 297.01 353.05 437.12 448.32 316.63 271.80 

C30W50T2

8 
30 50 28 2035.14 3454.63 3879.40 3831.01 951.70 992.03 1008.16 849.54 290.35 220.45 371.00 551.13 424.77 190.88 204.32 

C30W70T0

7 
30 70 7 257.30 480.12 753.33 981.46 1010.63 1002.68 968.19 753.33 456.24 307.70 366.06 397.89 352.79 241.39 190.99 

C30W70T1

4 
30 70 14 557.04 1179.45 1349.97 1421.03 1429.55 1367.03 1267.56 971.98 548.52 457.57 557.04 562.73 500.20 375.15 397.89 

C30W70T2

8 
30 70 28 605.12 1392.61 1530.76 1588.79 1594.31 1544.58 1417.47 969.85 508.41 502.89 596.83 605.12 469.73 317.76 339.86 

C30W90T0

7 
30 90 7 291.13 418.34 474.66 490.07 489.23 479.71 463.73 397.89 291.41 185.21 192.50 224.72 227.52 203.99 153.83 

C30W90T1

4 
30 90 14 145.89 198.28 304.72 355.45 365.39 349.48 313.34 161.81 40.45 25.20 51.06 72.28 51.06 15.58 12.60 

C30W90T2

8 
30 90 28 454.30 745.30 742.33 712.63 700.76 691.85 677.00 579.02 418.67 273.18 166.28 151.43 163.31 157.37 133.62 
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