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Abstract. Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in
areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon
is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP
tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the
influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN)
is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and
laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content,
cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS).
The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative
to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate
strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the
output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation
coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR)
and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The
results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and
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slip displacement.
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1. Introduction

As an imperative binding agent, cement is widely used
in geotechnical engineering to improve and stabilise the
ground with soft clay or polluted silt particularly (Kitazume
2013, Qin et al. 2020, Alam et al. 2021). Cement filling the
pores in soft soils employing soil mixing and jet grouting
yields pozzolanic activities to produce cement-soil
composite. The properties of this composite are much
improved than its ingredients alone (Han 2014, Li et al.
2020).

The combination of reinforcements into cement-soil
composites is proposed in excavation support and cutting
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off surface water to sustain the inevitable lateral earth
pressure (Shen et al. 2013, Luo et al. 2020, Xu et al. 2021).

One traditional method is to utilize rebar reinforcement
as part of the structure combined with the cement-soil
matrix to withstand the exterior load. However, the rebar is
bound to corrode during its service period which will lead
to the deteriorated performance of the composite,
particularly in permanent structures (Chen et al. 2018,
Wang et al. 2019, Wang et al. 2022). To address this
problem, GFRP tendons are employed to substitute the steel
rebars due to their high affordability and outstanding
engineering property (Yan and Lin 2016, Wang et al. 2018,
Fan et al. 2021).

The interface bond property of GTRCS is essential since
it presents the pullout ability, in agreement with reinforced
concrete (Tepfers et al. 2000, Ju et al. 2020). In many cases,
failures are caused by the bonding surface detachment
before the tendon reaches its ultimate strength. However,
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the failure mode correlated to the interface bond strength is
indistinct, leading to inadequate design guidelines of
reinforced cement-soil structures (CECS147 2016, Xie et
al. 2020). Moreover, previous research mainly focuses on
cemented soil's hydraulic characteristics and mechanical
properties (Horpibulsuk et al. 2003, Chew et al. 2004,
Abedini and Zhang 2021). Few reports mention the bond
performance between soil and GFRP reinforcements
(Timoney and Mccabe 2017, Zhao et al. 2020). This hinders
the utilization of GFRP tendons in cemented soils in
practice.

Cementitious solid, soil solid, and water are the three
main components of cement-soil composite, which largely
influence its mechanical properties (Timoney et al. 2012,
Kitazume 2013). Besides, the interface bond strength of
GTRCS is correlated to the relative slip displacement (Sp)
between cemented soil and tendons (Zhu et al. 2021).
Consequently, water content (Cw), cement content (Cg),
curing time (T¢), and Sp are four variables in this study. Due
to complicated facilities and abundant samples prepared in
an experimental environment, such a process was expensive
and time-consuming. Moreover, the traditional data
analysing methodologies have drawbacks in error control
and obtaining the best mix proportion under multivariable
conditions (Liu et al. 2015, Mou and Bai 2018, Hou et al.
2021). Although multiple linear regression (MLR) and
logistic regression (LR) are extensively employed, the curse
of dimensionality and co-linearity susceptibility resulting in
an inaccurate simulation is still common (Fernandez-
Martinez et al. 2020, Medvedeva et al. 2020). Thereby,
improved models are in great demand to help study
interface bond strength.

Nowadays, artificial intelligence (AI) techniques are
commonly applied in the field of building materials and
construction to build the bridge between inputs and outputs
(Abedini et al. 2020, Alam ef al. 2020, Zhang et al. 2021,
Zhang et al. 2021, Feng et al. 2022). For instance, the
artificial neural network (ANN) shows excellence in the
prediction of concrete strength (Sun et al. 2021). The
random forest (RF) vote to forecast concrete conductivity as
an Ensemble Learning Method (Sun et al. 2021). The
support vector regression (SVR)’s terrific ability to
generalize and calculate makes it popular in the information
mining field (Sun er al. 2021). Using Al techniques to
process data in complicated experimental tasks saves both
time and money (Sun et al. 2019, Gholipour et al. 2020,
Sun et al. 2021). Back propagation neural network is of the
most versatility and prevalence among all these techniques.
Because it is programmed easily and fast since
programmers only need to adjust the neural network
configuration (Chandwani et al. 2015, Zhao et al. 2021). Its
large-scale parallel computation provides the platform to
assess any objects constantly with high efficiency. Thereby,
BPNN has been in common application to forecast and
compare mechanical characteristics of various materials.

Although BPNN is in wide use, devising BPNN still
consists of numerous arduous trial-and-error methodologies.
The quantity of hidden layers and neurons in each of them
are two major hyperparameters affecting BPNN
characteristics directly (Sun et al. 2019). It costs plenty of

effort and time to form the BPNN framework with optimal
hyperparameters which hinders the subsequent process (Sun
et al. 2020, Zhang et al. 2020, Zheng et al. 2020). Thereby,
the particle swarm optimization (PSO) algorithm was used
in this research to adjust the BPNN framework. In general,
the PSO is a simple heuristic algorithm and stochastic
technique (Abido et al. 2002). Its mechanism is well
balanced and is flexible to suit and boost global and local
search. In addition, compared to other optimization
techniques, it has higher computational efficiency, demands
less memory, and is performed easier (Medvedeva et al.
2020). With the combination of these two, the number of
hidden layers, the number of neurons in them, and the
connection weights were adjusted to further save time and
labor. Owning to the outstanding robustness, fast
convergence, and satisfying distributed ability of the PSO
algorithm, the improved framework predicted bond strength
better.

In summary, pullout tests were carried out in this study
to explore the relationship between the interface bond
strength (Tp) of GTRCS and four variables (Cw, Cc, Te, and
Sp), which are also the four features in machine learning. In
total, 405 generated testing results served as the dataset to
train the high accurate PSO-BPNN model. Testing and
training datasets with the optimal BPNN were built to study
the error conditions in both sets. Besides, computed
correlation coefficients were also applied to evaluate the
relationship between the forecasted and measured Tp
outcome generated by such a model. Eventually, a
sensitivity analysis was applied to acquire the ranking of the
input variables.

2. Experimental programs
2.1 Materials

Soil equipping 40%-80% natural water content was
gathered from the floodplain, adjacent to the junction of
Xiangjiang and Jinjiang River in Changsha, China. Soil
particles were air-dried and ground in a machine before
being sifted out. To obtain uniform granularity, only
particles less than 5 millimeters in diameter were retained
and the particle-size distribution is shown in Fig. 1. The
ordinary Portland cement was utilized as the main binder
composition with a strength grade of 42.5. GFRP tendon
was 230mm in height to form GTRCS as pullout specimens.
The characteristics of the soil sample, cement, and GFRP
tendon are presented in Table 1 (Chen et al. 2020).

2.2 Mixture design

As mentioned above, Cy, Cc, and T are three variables
that significantly influence the properties of GTRCS. Water
content defines the proportion of the water to dry soil mass.
Areas where cemented stabilization are widely employed
usually feature clay with Cy near the liquid limit (normally
ranging from 50% to 90%). Cement content is presented as
the mass ratio of cement to the total of water and dry soil. It
was designed specifically to offer optimal stabilization
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Table 1 Materials used in the experimental program (Chen et al. 2020)

Properties Values

Soil sample

Specific gravity 2.705
Natural water content (%) 30-90

Liquid limit (%) 58.1
Plasticity limit (%) 28.6

Cement

Type PO 425
Specific gravity (t/m?) 3.0-3.2
Compressive strength (MPa) >42.5 (28-day)
Normal consistency (%) 27

GFRP reinforcement

Type GFRP tendon
Rib spacing (mm) 10.1

Tensile strength (MPa) 466

Outer diameter (mm) 16.8

Inner diameter (mm) 15

Young’s modulus (GPa) 40

Table 2 Influence variables with all levels used in the experimental project

Influence factor Nulg/bei of Magnitude Minimum Maximum Mean
Water content Cw (%) 3 50, 70, 90 50 90 70
Cement content Cc (%) 3 6, 18, 30 6 30 18
Curing duration 7t (days) 3 7, 14,28 7 28 16.3
Slip displacement S, (mm) 15 0.5,1,1.5,2,2.5,3,3.5,5,7,9,11,13,15,17,20 0.5 20 7.4

efficiency and adequate workability, usually between 6% to
30% (R. Babasaki 1996, A hnberg 2006, Wang et al. 2021).
Besides, properties of composites cured for 15 to 30 days
are widely used in case of practical problems such as tight
schedules (Han 2014, Xu et al. 2020). Hence, three
stepwise increasing levels were chosen for Cy, C¢, and T¢
with specific details shown in Table 2. In total, 27 GTRCS
specimens were prepared in this study (3 levels for C; x 3
levels for Cy, x 3 levels for Tg).

100
90 A

Percent finer (%)
L
(=1

10 1 0.1 0.01 0.001
Particle diameter (mm)

Fig. 1 Particle size distribution of soil sample (Chen et al.
2020)

2.3 Sample preparation

Cement-soil composites were prepared by mixing soil
and cement samples for 60 seconds. Later, water was added
and composites were mixed for another 480 seconds. GFRP
bar was installed in the middle of the pullout cell, as
presented in Fig. 2. The cells' bottoms were sealed with
paper plates in case of leaking and their internal surfaces
were lubricated to effectively limit the boundary friction.
Then, cemented soils were placed into the pullout cell and
vibrated to compact the microstructure with an even density.
Subsequently, each cell was stored in sealed plastic bags for
a preset curing time. After 7-day curing, paper plates were
detached to avoid extra adhesion.

2.4 Pullout test

The pullout load was conducted to the GTRCS
specimen tendon employing a pile interface friction testing
system (PIFTS) and its conformation is presented in Fig. 3.
The GTRCS specimen was installed on the traveling
platform and the tendon’s top was fixed to the load cell. The
traveling platform supplied the pullout force on the tendon.
It was fixed tightly with a constraining plate using screws to
guarantee proper interface shear displacement while the
platform was descending 1.0 mm/min. The load and
corresponding displacement were recorded by a load cell
and a linear variable differential transformer (LVDT),
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Fig. 2 Setup of pullout cell: (a) diagram of cross-sectional elevation, (b) 3D view of cell; and (c¢) diagram of cross-sectional

plan (Chen et al. 2020)
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Fig. 3 Pullout loading equipment: (a) diagram of setup; and (b) view in the lab (Chen et al. 2020)

respectively. The loading process was ended as soon as the
platform got a 20-mm displacement which sufficiently led
to a complete detachment between the cemented soils and
tendon (Chen et al. 2018). Eventually, the pullout strength
can be calculated at 15 interface slip distances, shown in
Appendix.

3. Machine learning methods

3.1 Back propagation neural network

The relationships between inputs (affecting variables)
and outputs (interface bond strength) in this case were
modeled using an artificial neural network. Generally,
multiple inputs are corresponding to one single output in a
neuron and neurons are divided into groups in each layer in
a neural network (Xu et al. 2020, Cai et al. 2021). The
neural network employs interlinked neurons to model the
functional relationships between inputs and outputs. The

equation below represents each neuron which is seen as a
calculation cell

y = max(O,Z'wixi +b) @)

where y and x; represent values of output and input in
each neuron; w; is connection weight; b denotes bias
value.

The Egs. (2) and (3) below build a mapping between
inputs and outputs

h; = max(0,W; - hj_; + b)) for 1<i<L,and hy=x (2)

y =max(0,V - h;) 3)

where L represents the layer numbers; matrices
wy,..W.,V, and vectors b,,.. b, are model parameters
got from the dataset.

Each network is comprised of an input layer, an output
layer, and a few hidden layers. As mentioned above, the
number of hidden layers and number of neurons in each
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hidden layer are two major hyperparameters of ANN in this
study. Owing to the significant influence of ANN
configuration on prediction accuracy, seeking the optimal
hyperparameters of ANN is essential. Thereby, this study
adopts the PSO algorithm to automatically search the
optimal hyperparameters. After determining the model
configuration, the output of the former layer gives value to
the input of the latter one. Fig. 4(a) presents a classic ANN
framework. It is named the feed-forward type of network
because the computation only goes on along the direction
forward. In the output layer, the following active function
was used mainly due to its superior performance (Zhang et
al. 2020)

f(x) = 1 @)

1 + exp(—x)

Back propagation (BP) is a training procedure for ANN
optimisation and its operation mode is schematically
presented in Fig. 4(b). Errors between predicted and
calculated output values are computed by the network in
each operation. These errors are propagated backward in
several iterations. The iteration and adjustment of their
weights are conducted and the mean square error (MSE)
between expected and observed outputs is effectively
reduced in this process (Zhang and Wang 2019, Shi et al.
2020). In the steepest gradient descent principle employed
here, weights are updated according to the error gradient
directly, i.e.

0E

K ow

where w means the weight between two neurons; Aw,

and Aw,_; represent the variation according to the weight

when it iterates n and n—1 times; a and n are the
momentum factor and learning rate.

The final connection weights are fixed upon finishing
the training procedure. Moreover, new input modes will be
attained by the network to produce corresponding output
and mapping. Among all these parameters, the connection
weights, bias values, the amount of hidden layers and
neurons in each layer directly influence the function of
BPNN which will be tuned by PSO.

)

AWn = aAWn_l

3.2 Baseline models

The PSO-BPNN model was compared with LR and
MLR to evaluate their forecast ability. The LR model with

several predictive variables is shown in Eq. (5) (Hosmer Jr
et al. 2013).

n
In—L— = b, + Z b 6)
k=1

1—p_

where x; is an independent and p is a dependent variate;
b, and b, are constant coefficients. Eq. (6) presents the
relationship between the output variable Y and multiple
predictive variables x, in the MLR model (Nathans et al.
2012, Sun et al. 2019).

Y =By + Brxs + Bixy + -+ Bnxp (N

where B, ..., B, denote the regression coefficients.
3.3 Particle swarm optimization

Hyperparameters of BPNN are adjusted by PSO which
is a global optimisation algorithm. One particle within the
searching scope represents one possible candidate solution
in PSO. Specifically, the above-mentioned two
hyperparameters are assumed as the particles of the PSO
algorithm. According to the PSO algorithm, the number of
hidden layers will be set as 1, 2, and 3, respectively. Then,
the number of neurons in each hidden layer will be tuned
within limited iterations (50 in this study), aiming at
achieving the minimum root-mean-square error (RMSE)
value on the validation set (section 3.4). It is noted that the
empirical scope of the number of neurons in each hidden
layer is ranging from 1 to 20 and the initial value is set as
10 in this study. During the tuning process, a particle’s
orientation is optimised based on its preceding best position
and the present best position of the rest of the swarm which
can be translated into

t+1 _ ¢ ¢
vift =w x vy + C; X 1y X (pbestyy — xfy) + Cy X 1y

X (gbestiq — x{y)

t+1 _ t t+1
Xig = = Xjg T Vig ©

where d means the dimension of the searching scope; v},
and vfj?' are the velocities of particle i when it iterates ¢
and t+1 times; xf; and x/i' are the coordinates of
particle i when it iterates ¢ and #+1] times; pbest;; and
gbest;; are the best given location of the particle and the
best given location of the whole swarm; w represents the
original weights; C; and C, are acceleration factors (the
value is usually 2); r;; and r,; are two values picked from
0 to 1 randomly.

It is noted that PSO fails to provide the highest
prediction accuracy if the program is carried out for only
one time owing to its inherent stochastic properties. Several
run times are conducted and the statistical outcomes are
compared to verify the feasibility of the proposed procedure.
In this paper, the results of only one run time are presented.

3.4 Cross validation and performance evaluation
measure

Small data sets leading to overfitting problems is a
common issue that could be solved by employing 10-fold
cross-validation (CV) (Cawley and Talbot 2010, Alam et al.
2020). Specifically, the hyperparameters are adjusted on a
randomly segmented training set (the external training set)
comprising seventy percent of the samples (Hsu et al. 2003).
Moreover, the external training set is segmented into a
validation set (comprising ten percent of the external
training data) and an internal training set (comprising ninety
percent of the external training data). PSO seeks optimum
BPNN hyperparameters on the internal training set. It also
computes the RMSE of the validation set to assess the
characteristics of the model. This procedure is duplicated
ten times to attain ten RMSE values. Model
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hyperparameters with the minimum RMSE values are the
prime ones and will be chosen to configurate the ANN
model. The procedure of BPNN model training by 10-fold
CV and PSO is shown in Fig. 5.

In this research, the root mean square error, correlation
coefficient (R), mean absolute error (MAE), and mean
absolute percentage error (MAPE) employed to assess the
ML models’ characteristics are defined as

N
1
RMSE = |2 (v = )2 (10)
i=1

L0 =)0 =)

R = — — (1)
VI (&7 =y 2N, (v — 7)?
1% [yr
MAPE=—Z Y y‘| (12)
Ni=1 yi

1

n
MAE == Iy = vl (13)
i=1

where N means the number of samples in the dataset; y;
denotes the forecasted output of ML models; y; denotes
the real output in the dataset; y* represents the forecasted
mean value, and y represents the real mean value in the
dataset.

4. Results and discussion
4.1 Results of the pullout test

Fig. 6 presents the ultimate interface bond strengths of
7, 14, and 28-day with varying cement and water contents.
The ultimate strength was positively correlated to C.. As C.
increased from 6% to 30%, the bond strength improved
approximately 54 times, reaching 3879.40 kPa (C,, =50%,
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Tc =28 days). This was attributed to higher cement content
resulting in more hydraulic reactions and consequently
increased cementitious products generated within the
cement-soil matrix. But upon water content raising to 90%,
the strength only increased 26 times, reaching 745.30 kPa.
That is, water content negatively affected the ultimate
bonding performance. In addition, when C, was 30% and T¢
was 28 days, the strength decreased by approximately 81%,
from 3879.40 to 745.30 kPa, as C,, rose from 50% to 90%.
This reduction was due to extra water leading to insufficient
hydration reaction. However, the strength only decreased by
61% when C. is 6%. These phenomena could be concluded
that both Cy and C. had a stronger influence on the ultimate
strength when the water-cement ratio was low. This was
ascribed to the fact that extra water led to pore pressure in
the curing time which resulted in a porous interface
microstructure (A hnberg 2006, Zhang 2014).

The 28-day bond-slip curves of specimens with varying
C, and C; are presented in Fig. 7. Due to the existence of
the ribs, tendons and cemented soil were interlocked tightly

so that their relative motion was constrained with each other.

Thereby, the elastic stage (the positive proportion between
T, and Sp) was initially obtained when tendons started to

move (Wu et al. 2019, Abedini and Zhang 2021, Zhang et
al. 2022). Besides, the initial plastic zones and shear failure
surfaces were shaped and extended during this stage. The
elasticity and corresponding ultimate strength were
negatively affected by the water content. The 2.5 mm slip
distance and 2016 kPa peak strength were obtained for
sample C18W50T28. However, the values were decreased
to 0.5 mm and 275 kPa, respectively when the water content
increased to 90% (C18W90T28). This was attributed to
extra water leading to the formation of pores inside the
cemented soil and insufficient cementitious products
generated. It weakened the cement stabilization and
consequently increased the level of the soil fragments’
detachment and lowered the shear capacity of the cemented
soil matrix. Similarly, the increase of cement content
enhanced the elasticity and ultimate strength of GFRTS,
which was presented in Fig. 7(b).

The T, was gradually reduced to residual strength (the
first trough) when the slip distance increased to around 9
mm. During this process, the soil fragments were gradually
detached to fill the space between the ribs, reducing the
effective rib height, diminished interlock effect, and
consequently lowered 7). The residual strength was affected
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positively by C. and negatively by C,. As C. grown from
6% to 30%, the residual strength increased from 2.63 kPa to
502.89 kPa (C, =70%, T.=28 days). Nevertheless, it
witnessed a reduction from 607.44 kPa to 32.83 kPa as C,,
grew from 50% to 90% (C. =18%, T.=28 days). In addition,
the second peak strength (at approximately 13 mm slip
distance) appeared in samples with cement content over
18% or water content under 70%. This phenomenon was
due to the regenerated smaller plastic zones and shear
failure surfaces because of the reduced rib height (Chen et
al. 2020). It further verified the effectiveness of a high
cement-water ratio on the cemented soil’s robustness. In
conclusion, samples with high C. or low C, possessed
enhanced elasticity, ultimate strength, and residual bond
strength, which were all positively affected by cement
content and negatively influenced by water content.

4.2 Modelling results for Tp

4.2.1 Hyperparameter tuning

The BPNN with the optimum hyperparameters is picked
from the 8™ fold with the smallest RMSE employing PSO
and 10-fold CV, as illustrated in Fig. 8(a). Fig. 8(b) presents
the RMSE convergency and hyperparameters adjusting by

PSO. It shows that the RMSE reached a minimum at the
26" iteration in the 8" fold and stayed constant at the
remaining iterations. The attained optimal BPNN
framework comprises a hidden layer with 10 neurons. co
Moreover, in the 70% training dataset, the bias values and
connection weights of BPNN with constant framework
were adjusted by PSO. Eventually, the adjusted BPNN
model with a 3-10-1 framework (3 neurons in the input
layer; 10 in the hidden layer; 1 in the output layer) was
employed to forecast bond strength.

4.2.2 Performance of PSO-BPNN for Tp modeling

Fig. 9 presents the comparison of forecasted and real T},
for testing and training datasets with the optimal BPNN.
Minor errors were found in both sets, thereby such PSO-
BPNN model was dependable to assess 7,. Besides,
computed correlation coefficients were applied to evaluate
the relationship between the forecasted and measured 7,
outcome, as presented in Fig. 10. The coefficients were
0.9402 and 0.9080 for training and test sets respectively
displaying that this model is reliable again. Moreover, the
RMSE/R value for both sets was near proving that the
fitting was moderate without overfitting problems.
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Fig. 11 Performance evaluation of three models by (a)
Boxplot and (b) Taylor diagram

Furthermore, the comparison of forecasting ability
between the PSO-BPNN model and benchmark models
including MLR and LR was conducted in this research. The
diversity between the results of forecasted and laboratorial

Sp: 26.22%

Cw: 30.66%

Influential variable

Cc: 33.93%

0 10 20 30
Importance ratio (%)

Fig. 12 The relative importance of each variable on 7, of
GTRCS

Table 4 Evaluation of three ML models on the bond
strength test set

Evaluation Model
index BPNN LR MLR
RMSE (kPa) 239.11 402.00 370.83
R 0.9080 0.7692 0.7449

T, employs a box plot for MLR, R, and BPNN as shown in
Fig. 11(a). The BPNN model had the smallest median value
(the red line) and the narrowest interquartile range (the
space between the top and bottom blue lines) compared to
the other two. It represented that this model had the lowest
prediction error among all three models. In addition, the
high excellence of BPNN in forecasting 7, was also
illustrated by the lowest upper limit (the black line),
although several outliers existed. Moreover, the integration
of three indices in model evaluation (RMSE, R, and
standard deviation) using polar coordinates is presented in
Fig. 13(b). Similarly, the BPNN model performed the best
again for it was the nearest to the “actual” point in the
Taylor diagram. It has the smallest RMSE, the largest R
value, and minimum standard deviation values among all
three models. Various forecasting models’ operation
statistics in the testing set are listed in Table 3. These
comparison consequences denote that using the PSO-BPNN
model is an optimal method to forecast the 7, of GTRCS.

4.3 Variable significance for bond strength

Fig. 12 presents the significance ranking of affecting
variables employing SA. The significance score of cement
content was 33.93%, making it the most significant
affecting variable, higher than that of water content and slip
distance which was 30.66% and 26.22%, respectively. The
discovery mentioned above that 7, development was
extremely susceptible to C. and C,, was consistent with such
ranking (Singh et al. 2011, Tsai et al. 2019). Moreover, the
significance score of curing time was only 9.18%, namely
the lowest one. Consequently, this significance metric
quantitatively analyses these input variables which offers an
outstanding way to comprehend the development of 7,,.
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5. Conclusions

In this study, the interface bond performance between
the cemented soil matrix and GFRP tendons was
investigated by conducting pullout tests. Based on the
testing results, a PSO-BPNN model was trained to predict
the bond strength and the forecasted values were consistent
with the generated results. The concluding remarks were
depicted as follows.

. The ultimate interface bond strength was
positively influenced by cement content and negatively by
water content. Sample C30W50T28 showed the largest
ultimate strength which was 3879.40 kPa. Besides, high
cement to water ratio enhanced the robustness of GTRCS to
withstand detachment of soil matrix which led to increased
elasticity and residual strength.

. The PSO-BPNN model was built in a framework
where there were 3 neurons in the input layer, 10 in the
hidden layer, and 1 in the output layer. Its RMSE reached a
minimum value at the 26 iteration in the 8™ fold. The
accuracy of the PSO-BPNN model in forecasting bond
strength was reflected in a lower RMSE (239.11 kPa) and
higher R (0.9080) compared with MLR and LR. Besides, its
correlation coefficients were 0.9402 and 0.9080 for training
and test sets respectively, displaying its reliability.

. The significance ranking of variables showed that
cement content was the most significant followed by water
content and slip distance, and curing time was of the least
significance. The results also complied with the
experimental findings.

For limited statistics will strongly affect the forecast
capacity of PSO-BPNN models, a larger database is needed
in the successive research. Moreover, the exploration of
more variables is essential such as the tendon type, soil
components, etc. Other progressive or evolved Al
technologies should also be applied to enhance usability,
efficiency, and correctness.
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Appendix
Specimen CC CW  Tc Sp (mm)

(%) (%) (day) o5 1 15 2 2.5 3 35 5 7 9 11 13 15 17 20
CO("XSOTO 6 S0 7 4624 5350 5108 48.12 4517 4248 3871 2850 1828 11.02 1183 1156 9.68 860 6.18
CO(’VZSOTI 6 S0 14 3737 5269 5242 5135 5027 48.66 4624 3844 2742 2393 2312 2312 2258 1989 1855
CO(’“SISOTZ 6 50 28 6895 7031 6759 6568 6295 5996 S56.14 3843 23.16 1472 1063 1145 981 736 572
CO(’WOTO 6 70 7 380 673 702 702 673 644 614 439 351 293 293 293 263 234 234
C°6VZ7OT1 6 70 14 721 970 995 970 895 846 771 423 249 373 298 323 274 199 249
C°6VZ7OT2 6 70 28 527 907 995 936 819 731 614 410 263 263 293 293 234 176 205
C°6VZ9°T0 6 9 7 259 317 346 317 288 259 231 173 144 115 086 058 029 029 029
C°6VZ9°T1 6 90 14 2818 2680 2487 2321 2128 1989 1796 1603 1464 1078 1188 1133 995 1022 857
C°6“§9°T2 6 90 28 1558 27.52 2420 2222 2056 1923  17.57 1393 1028 829 696 564 564 464 497
CI8W50TO

DOTO 8 50 7 45048 64906 67423 68322 67477 63607 569.03 38835 23437 20685 22783 22620 18150 13572 12945
CISVZSOTI 18 50 14 817.58 138170 1482.54 1501.62 1482.54 143621 1359.90 1060.12 596.83 46329 547.78 588.66 50145 337.93 280.70
CIS‘ZSOTZ 18 50 28 61009 1305.07 1803.76 1976.17 2015.96 200535 1912.51 1498.71 901.88 607.44 70824 763.94 70559 578.26 480.12
CI8W70TO

VOTOus 70 7 18423 27706 29351 28533 27661 26762 25563 20112 12018 5587 5396 7605 7903 6295 2616
CISW70TI

VO ag 70 14 20655 20139 32738 34610 34523 327.96 30134 19251 9859 9655 13429 14336 9889 5383 6495
CISWT0T2

W UP8 70 28 21701 36012 39356 39529 37424 34599 31226 20788 10639 10380 13119 12773 §9.67 5968 8361
Clg‘X%TO 18 90 7 6775 147.06 183.89 16588 155.12 147.86 142.49 12662 101.89 62.64 4830 4866 5027 47.85 3844
CI8W90TI

VO ag 90 14 23153 19277 18042 17150 16773 16008 15229 127.94 10153 8026 7889 8266 8301 864 6723
CI8W90T2

CUPO8 90 28 27521 2083 20425 19132 18004 16744 16280 13561 10080 7858 5504 47.08 4609 4145 3283
C30W50T0

VOTO 30 S0 7 67327 136774 163474 1758.03 1803.06 1788.66 1739.45 139130 89525 620.65 657.82 73374 67353 57039 43898
C3°VZ5°T1 30 50 14 863.02 1882.96 2591.87 2989.76 2967.34 2802.02 2247.22 585.62 439.92 297.01 353.05 437.12 44832 316.63 271.80
C3°V§5°T2 30 50 28 2035.14 3454.63 3879.40 3831.01 95170 992.03 1008.16 $49.54 29035 22045 371.00 551.13 42477 190.88 204.32
C30W70TO

VOT030 70 7 25730 48002 75333 98146 1010.63 100268 968.19 75333 45624 307.70 36606 397.89 35279 24139 1909
C3°‘Z7°T1 30 70 14 557.04 117945 1349.97 1421.03 1429.55 1367.03 1267.56 971.98 548.52 457.57 557.04 562.73 50020 375.15 397.89
C3°V§7OT2 30 70 28 60512 1392.61 1530.76 1588.79 159431 154458 1417.47 969.85 50841 502.89 596.83 605.12 469.73 317.76 339.86
C30W90T0

YOT030 90 7 29113 41834 47466 490.07 48923 47971 46373 397.89 29141 18521 19250 22472 227.52 20399 15383
C30W90T!

VO30 90 14 14589 19828 30472 35545 36539 34948 31334 16181 4045 2520 5106 7228 5106 1558 1260
C30W90T2

30 90 28 45430 74530 74233 71263 70076 691.85 677.00 579.02 41867 273.18 16628 15143 16331 157.37 133.62
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