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A B S T R A C T   

Electrically conductive cementitious composites (ECCC) possesses numerous virtues including low resistivity and 
high strain sensitivity, which can be applied as a conductive sensor to monitor structural health. This study 
produced ECCC with three conductive ingredients, consisting of graphite powder (GP), ground granulated blast- 
furnace slag (GGBS), and steel slag (SS). The uniaxial compressive strength (UCS), flexural strength (FS), and 
electrical conductivity were investigated, which showed that the GP enhanced the conductivity more remarkably 
than the other conductive materials. However, it simultaneously reduced the UCS and FS of ECCC. Also, ECCC 
samples containing SS had higher FS and conductivity than that containing GGBS. To overcome the challenge of 
excessive variables, this study introduced an artificial-intelligence (AI) based multi-objective optimisation 
(MOO) model with 252 samples for the FS test and 336 samples for the resistivity experiment. The support vector 
regression (SVR) was trained with hyperparameters tuned by the beetle antennae search (BAS). The high cor-
relation coefficients (0.981) were achieved on both test sets. The BAS-SVR model acted as the objective function 
to develop the multi-objective beetle antennae search algorithm (MOBAS-SVR). The Pareto front of a tri- 
objective mixture optimisation design for ECCC (cost, FS, and resistivity) was successfully obtained as a 
design reference. Furthermore, sensitivity research was implemented to comprehend the importance of the 
variables for the FS and electrical resistivity.   

1. Introduction 

Cementitious composite is widely used in the construction industry 
since it yields convenient usage, low cost, reliable durability, and 
excellent mechanical properties [1,2]. However, excessive cracking 
elongation may result in brittle failure and the damaging information is 
hard to directly acquire from external structure [3,4]. Thereby, the in-
ternal health monitoring system is the key to prevent sudden failure. The 
electrically conductive cementitious composite (ECCC) has superior 
electrical conductivity and can be used as a detection sensor to detect 
the internal electrical resistance, providing real-time information of 

structure [5,6]. Compared to the traditional structural materials, 
self-sensing concrete has the benefit of high sensitivity, acceptable me-
chanical performance, and natural compatibility without additional 
sensors for monitoring [1,7]. The self-sensing ECCC has been applied to 
practice in versatile forms (e.g. bulk, coating, sandwich, bonded, and 
embedded forms) [7]. Therefore, ECCC can be considered as a reliable 
and promising self-sensing material that is in great demand in practical 
application [1]. 

To improve the electrical ability, conductive ingredients are added to 
ECCC [7,8]. Graphite powder (GP) is attractive due to its lightweight 
and high conductivity. Nevertheless, GP equips a smooth surface in the 
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microstructural scale, which lessens the surface bonding strength and 
consequently reduces the mechanical properties [9]. Thereby, the con-
ductivity and the strength of ECCC need to be balanced. To this end, 
metal waste slags are also introduced to ECCC, including steel slags (SS) 
and granulated blast-furnace slag (GGBS), which are generated from the 
steel fabrication and iron slag quenching, respectively. Both SS and 
GGBS are characterised by crystallization and roughness, which effec-
tively cohere aggregates and intensify the endurance and mechanical 
strength of the concrete [10,11]. The GGBS possesses high hydraulic 
reactivity and certain conductivity, contributing to the cement hydra-
tion and simultaneously maintaining relatively high conductivity [12, 
13]. Moreover, GGBS improves the resistance of sulfates, chlorides, 
alkali-silica reaction, and thermal cracking [14–16]. SS contains 
numerous iron oxides (FeO, Fe2O3, and Fe3O4) and other metal oxides. 
Although Fe2O3 has low conductivity, FeO and Fe3O4 have low electrical 
resistivity of 5 × 10− 2 and 4 × 10− 3 Ω⋅cm, respectively (basically the 
same as that of pitch-based carbon fiber) [17]. Therefore, the electrical 
conductivity of SS is at the level typical for semiconductors. And the 
varying square sharp edges around the surface of SS can form a 
conductive network with GP [18]. Therefore, the combination of slag 
ensures outstanding electrical conductivity and adequate mechanical 
strength. 

From the aspect of sustainability, the introduction of SS and GGBS in 
ECCC improves cost-effectiveness and simultaneously reduces environ-
mental pollution [19,20]. The steel industry produces numerous SS and 
GGBS annually, but the treatment is expensive and time-consuming 
[21]. They are usually discarded in landfills, posing a significant haz-
ard to public health, soil, and water. Therefore, seeking a feasible way to 
cope with this problem is essential. Because SS and GBSS exhibit 
pozzolanic characteristics, they can be used to replace cement to reduce 
carbon dioxide emissions [22,23]. 

Concrete normally has enormous compressive strength and relatively 
low tensile strength so that most cracking appears in the tensile region 
other than the compressive region. The flexural strength (FS) is usually 
used to design concrete pavements, beams, and slabs, estimating the 
tensile stress that causes cracking and evaluating deflections at service 
loads. Besides, FS is a vital parameter in the application of structural 
health monitoring [7]. Thereby, FS is reasonable to be investigated 
owing to its vital influence in construction design and SHM application. 
Apart from FS, electrical resistivity is an absolutely crucial criterion for 
ECCC utilisation [9,24]. To assess the effect of conductive ingredients on 
mechanical strength and electrical resistivity, specimens containing 
different amounts of GP, SS, and GGBS were prepared and tested. 
However, the lab-based approach wastes time and energy because 
numerous samples and testing equipment are required [25–27]. Besides, 
the outcome can only be obtained with limited mixtures and the appli-
cation of reasonable regression function is challenging because it re-
quests adequate experience [28–30]. Hence, to get resistivity and FS 
with arbitrary mixture proportions, the relationship between FS/resis-
tivity and the influencing variables needs to be quantitatively 
determined. 

To this end, machine learning (ML) models are proposed for antici-
pating the FS and electrical resistivity of ECCC, such as the artificial 
neural network (ANN) and support vector regression (SVR) [32]. The 
SVR model has been broadly utilised in the information mining field 
because of its great generalization capacity and quick calculation ca-
pacity [33,34]. Many specialists have remarked on its good noise 
resistance, excellent generalisation ability, and quick learning velocity 
compared to the other ML models [35,36]. The SVR model can cope with 
classification problems, together with linear or non-linear tasks [37]. 
Also, it can calculate a linear regression function by mapping to the 
higher dimensional space while simultaneously decreasing the 
complexity [38,39]. Therefore, the SVR model is chosen for data pre-
diction. However, the performance of the SVR model is restricted on its 
hyperparameters which are difficult to adjust utilising conventional 

optimisation strategies [40,41]. Hence, several optimisation algorithms 
have been proposed, such as genetic algorithm (GA) [19], firefly algo-
rithm (FA) [42], and particle swarm optimisation (PSO) [43], but they 
are computationally intensive. The beetle antennae search (BAS) algo-
rithm is another optimisation approach, having much less calculation 
time [44,45]. Therefore, the BAS algorithm is selected for hyper-
parameters adjustment of the SVR model. 

The BAS-SVR based multi-objective optimisation model (MOBAS- 
SVR) is then established to optimise the mixture proportions of ECCC 
utilising a metaheuristic algorithm [46–48]. The single-objective opti-
misation method is not considered since the concrete design is usually 
complicated which requires simultaneous consideration of multi targets 
such as cost, FS, slump, etc. The multi-objective optimisation approach 
(MOO) can optimise multiple objectives under highly nonlinear con-
straints by proposing Pareto solutions. For instance, the strength, slump, 
and cost of the plastic concrete were optimised using a multi-objective 
PSO algorithm by Zhang et al. [49]. Therefore, the MOBAS-SVR was 
proposed to optimise the cost, FS, and resistivity of ECCC. 

In this study, the experiments of FS and electrical resistivity were 
conducted to investigate the influence of three conductive materials 
(GP, SS, and GGBS) of ECCC. In total, 90 and 252 samples were cast for 
the UCS and FS tests, respectively, together with 336 samples prepared 
for the resistivity test. The datasets of FS and resistivity of ECCC ac-
quired from the laboratory tests were then used to train the SVR models 
with hyperparameters tuned by the BAS algorithm. The MOBAS-SVR 
was then proposed based on a weighted sum method to obtain the 
Pareto optimal solutions considering three objectives: cost, FS, and re-
sistivity. Finally, A sensitive study was carried out to understand the 
degree of dependency of the outcome on input variables. 

2. Experimental program 

2.1. Mixture design 

The ordinary Portland cement is OPC, P.O 52.5R, and the silica sand 
is served as fine aggregate with a fineness modulus of 2.6 and particle 
diameter ranging from 0.2 mm to 0.4 mm. The coarse aggregate is gravel 
with particle size ranging between 5 mm and 10 mm. The GP, produced 
by GRF Ltd, China, is chosen as the primary conductive filler [50]. It has 
high purity (98.5%) and excellent electrical conductivity. The SS and 
GGBS are the other two conductive fillers, which were purchased from 
Yuanheng Co. LTD, China. The physical properties and chemical content 
of cement, GP, SS, and GGBS are presented in Table 1. 

The water to binder (SS, GGBS, and OPC) ratio and aggregate to 
binder ratio were fixed to 0.35 and 4.86, respectively. The percentage of 
fine aggregate to coarse aggregate was 0.4 for all mixes. Besides, the GP 
to binder ratios were 2%, 4%, and 6%, and the GGBS or SS were used to 
replace the cement by 10 wt%, 15 wt%, and 20%. The UCS and FS tests 
were implemented on the sample under 7, 14, and 28 curing days, while 
the electrical resistivity test was tested on 7, 14, 21, and 28 days. The FS 
and resistivity tests were conducted on all the samples with varying 
content combinations of GGBS, SS, and GP, whereas the UCS test was 
implemented on specific samples with the same content of GGBS and SS. 
Three specimens with the same mixture were analysed, and their 
average UCS, FS, and resistivity values were recorded and presented in 
Appendix A. 

2.2. Sample preparation 

The cement and fine and coarse aggregate were thoroughly mixed in 
a container for 5 min. The SS and GGBS were then added and mixed for 
another 30 s to ensure uniform distribution. At the same time, the water 
was weighed and separated in half. The first half was used to wet the 
composite and blended for 80 s. Subsequently, the other half was 
sprayed onto the composite for an additional 200 s. After 30 s of the 
vibration to avoid the increase in the porosity, the composite material 
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was poured into a steel mold (400 × 100 × 100 mm) for resistivity test, a 
mold (50 × 50 × 50 mm) for UCS test, and a mold (40 × 40 × 160 mm) 
for FS test. After casting, the samples were immediately transferred to a 
wet cabinet with appropriate humidity (95 ± 5%) and temperature (20 
± 1 ◦C) for 24 h. Then, the specimen was demoulded and stored in the 
wet cabinet to the designated days. Before conducting the electrical test, 
the specimens were placed in the air for 2 days to diminish the wetting 
influence on the ECCC electrical conductivity. 

2.3. Mechanical test 

For each mix, the UCS and FS of ECCC were determined as the 
average value of three parallel specimens at the 7th, 14th, and 28th days 
as per Chinese National Testing Standards GB/T 50081–2002 [51]. A 
servo-hydraulic machine (YAW-4206) was used to obtain the peak UCS 
with a loading rate of 0.5 MPa/s. The FS of specimens was automatically 
achieved via a three-point bending machine at a constant loading rate of 
0.3 MPa/s. The flexural strength ft (MPa) was calculated by Equation 
(1). 

ft =
3FL
2bh2 (1)  

where F is the fracture load (N); L, h, and b are the span length, and the 
height and width of the cross section (mm), respectively. 

2.4. Electrical test 

Both GGBS and SS possess a low hydration rate, however, the slow 
slag hydration would not significantly influence the whole mortar hy-
dration degree when the slag content was low [52,53]. The ML models 

can also provide a prediction for long-term ECCC conductive behaviour. 
Therefore. The resistivity of ECCC was determined by utilising the 
four-pole method at 7, 14, 21, and 28 days [54]. The four metal mesh 
electrodes (100 mm × 100 mm) were inserted into the sample with an 
inρ = UA

IL terval of 120 mm as shown in Fig. 1a. The final conductivity 
values were averaged from the three identical samples for each mix by a 
digital multimeter (Keithley Model 2002) through a copper wire. The 
ECCC samples are shown in Fig. 1b and the electrical resistivity ρ is 
calculated according to Equation (2). 

ρ=UA
IL

(2)  

where U represents voltage; A is the sectional area of the specimen; I and 
L are the electric current and the distance between electrodes, respec-
tively. 

3. Multi-objective optimisation methodology 

The optimisation design of ECCC follows the methodology of 
MOBAS-SVR with the process presented in Fig. 2. This starts from the 
construction of two SVR models to predict the values of FS and electrical 
resistivity. The hyperparameters of SVR are tuned by BAS and 10-fold 
cross-validation (CV). Then, the unit price and density are defined to 
calculate the cost of each mix. Finally, the FS, resistivity, and cost are set 
as three optimised objectives by applying a multi-objective function 
based on the weighted sum method. The Pareto front is produced to 
show the optimisation mixture design of ECCC. 

Table 1 
The physical and chemical properties of cement, GP, SS, and GGBS.  

Cement GGBS 

Chemical composition Chemical composition 

CaO 63.40% CaO 37.14% 
SiO2 20.10% SiO2 31.00% 
Al2O3 4.60% Al2O3 15.60% 
Fe2O3 2.80% MgO 8.51% 
SO3 2.70% SO3 2.40% 
MgO 1.30% Fe2O3 1.80% 
Na2O 0.60% MnO 0.10% 
Total chloride 0.02%   

Physical Properties Physical Properties  

Specific gravity 3.0–3.2 t/ 
m3 

Specific gravity 2.84 t/m3 

Fineness index 390 m2/kg Specific surface area 472 m2/kg 
Normal consistency 27% Relative strength 100% 
Setting time initial 120min Pozzolanic Activity (7 

days) 
78% 

Setting time final 210min Ignition loss 0.6% 
Loss on ignition 3.80% Particle size distribution 23–37.4 

μm 

Graphite Powder Steel Slag 
Chemical composition Chemical composition 

Carbon Carbon CaO 31.49% 
Ash Content Ash Content SiO2 14.60% 
Al2O3 5.71% Al2O3 5.71% 
MgO 13.8% MgO 13.80% 
SO3 2.40% SO3 2.40% 
Fe2O3 21.3% Fe2O3 21.30% 

Physical Properties Physical Properties  

Bulk Density 0.33 t/m3 Specific gravity 3.67 t/m3 

Melting Point 4200◦C  Relative strength 100% 
Moisture Content 0.35% Temperature rise 18.8OC 
Particle size 

distribution 
10–37.4 μm Particle size distribution 50–75 μm  

Fig. 1. The diagram of (a) the four-electrode method and (b) ECCC samples.  
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3.1. Data description 

The datasets are gathered from the results of 252 samples from the FS 
test and 336 samples from the conductivity test. The input factors 
incorporate the age, and the content of cement, GP, SS, and GGBS, and 
the output variables are FS and electrical resistivity of ECCC. The in-
formation of the variables is summarised in Table 2 and Table 3. 

The correlation between input variables of FS and Resistivity data-
sets is demonstrated in Fig. 3. The correlations between different vari-
ables are shown less than around 0.5, which proves they are 
independent without the multicollinearity problems. Thereby, the BAS- 
SVR model can be successfully established for AI-based multi-objective 
optimisation design. 

3.2. Objective function: BAS-SVR based model 

3.2.1. Support vector regression (SVR) 
SVR is a frequently used regression method established by Vapnik 

(1995). It can solve the nonlinear problem by organizing data from the 
sample space to the higher dimensional space, which is achieved by the 
Kernel function [55]. The data is described as (xi, yi) where xi is a 
one-dimensional vector and yi is the scalar regression value. The training 
dataset is n groups described in Equation (3) and the regression function 
is written as Equation (4). 

{(x1, y1), (x2, y2),…, (xn, yn)} (3)  

f (x)=w⋅ϕ(x) + β (4)  

where w and β are the weight vector and bias; ϕ(x) is a mapping func-
tion. The loss function is also introduced as Equation (5) to determine 
the deviation degree between f(xi) and yi. 

L (x, y, f )= |yi − f (xi)|e =

{
0, |yi − f (xi)| < e
|yi − f (xi)| − ei, |yi − f (xi)| ≥ e (5)  

where e illustrates the largest tolerance error, which means that the 
training points are not penalised if they are within the e-tube. The 
problem is described as follows with the minimal structural risk 
considered [56]. 

R (w)=
1
2

w2 +
∑n

i=1
L (x, y, f ) (6) 

To enhance the tolerance of biased data, the slack variables δi and δ*
i 

are utilised to deal with infeasible constraints. Equation (6) can be 
transformed into the following convex optimisation function: 

minw,e,δ,δ∗ R (w)=
1
2
w2 + C

∑n

i=1

(
δi + δ∗i

)

s.t

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi − w⋅ϕ(x) − β ≤ e + δi

w⋅ϕ(x) + β − yi ≤ e + δ* ​
i

δi ≥ 0
δ* ​

i ≥ 0

(7) 

Fig. 2. Flowchart of the MOBAS-SVR system for ECCC optimisation design.  

Table 2 
Statistics of input and output variables for the FS dataset.  

Input Variables Minimum Maximum Mean Std Dev. 

Cement (kg/m3) 270 450 315 36.41 
GP (kg/m3) 0 27 18 8.10 
SS (kg/m3) 0 90 67.5 22.37 
GGBS (kg/m3) 0 90 67.5 22.37 
Age (day) 7 28 22.5 8.75 
FS (Mpa) 1.8 4 2.87 0.54  

Table 3 
Statistics of input and output variables for the Resistivity dataset.  

Input Variables Minimum Maximum Mean Std Dev. 

Cement (kg/m3) 270 450 315 35.92 
GP (kg/m3) 0 27 18 7.99 
SS (kg/m3) 0 90 67.5 22.06 
GGBS (kg/m3) 0 90 67.5 22.06 
Age (day) 7 28 17.5 7.86 
Resistivity (Ω⋅cm) 3.93× 102  4.21× 106  4.98× 104  5.41× 105   
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where C is the penalty parameter to evaluate the penalising degree of the 
difference between the regression curve and the samples out of the 
e-tube. 

Fig. 4 presents a schematic diagram of a nonlinear SVR. Subse-
quently, the prime problem needs to be adjusted to the dual problem by 
introducing the positive Lagrange multipliers (αi, α*

i , ui, u*
i ) to allow for 

multiple constraints. The dual function is written as Equation (8). 

L(w, β, δ, a, u)=
1
2

w2 + C
∑n

i=1

(
δi + δ∗i

)

−
∑n

i=1
ai(e+ δi − yi +w ⋅ ϕ(xi)+ β)

−
∑n

i=1
a∗

i (e+ δi + yi − w ⋅ ϕ(xi) − β)

−
∑n

i=1

(
uiδi + u∗

i δ∗i
)

(8)  

When the constraint equation is seriously opposite to each other, and the 
objective equation is differentiable, the Karush-Kuhn-Tuck (KKT) rules 
should be achieved for each of the original and dual points in Equation 
(9) [58]. According to the KKT, the product of dual variables and con-
straints in the optimal solution is 0 as shown in Equation (10). 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= w −
∑n

i=1

(
ai − a∗

i

)
ϕ(xi) = 0

∂L
∂β

=
∑n

i=1

(
ai − a∗

i

)
= 0

C − ai − ui = 0

C − a∗
i − u∗

i = 0

(9)  

ai( e + δi − yi + w⋅ϕ(xi) + β) = 0
a*

i ( e + δi + yi − w⋅ϕ(xi) − β) = 0
(C − ai)δi = 0
(
C − a*

i

)
δ*

i = 0

(10) 

The Langrage dual problem is finally deduced as follows by solving 
the above equations. 

maxi

(

−
1
2
∑n

i=1

∑n

j=1

(
ai − a∗

i

)(
aj − a∗

j

)
xT

j xj − e

×
∑n

i=1

(
ai − a∗

i

)
+
∑n

i=1
yi
(
ai − a∗

i

)
)

s.t

⎧
⎪⎨

⎪⎩

∑n

i=1

(
ai − a∗

i

)
= 0

ai, a∗
i ∈ [0,C]

(11) 

According to Equation (10), the weight factor w can be obtained as 
∑n

i=1
(ai − a*

i )ϕ(xi), and the regression function is given in Equation (12). 

f (x)=
∑n

i=1

(
ai − a∗

i

)
ϕ(xi)x + β (12)  

3.2.2. Beetle antennae search (BAS) 
BAS is a metaheuristic algorithm proposed to automatically seek the 

optimal hyperparameters of the ML models. It is derived from the 
behaviour of the longhorn beetle [59]. The beetle can perceive the 
concentration of odour via its two antennae and move towards the 
orientation where the concentration is dominant. In the BAS algorithm, 
xl and xr indicate the position of left and right antennae, respectively. 
The superscript i means the ith time instant. Therefore, the position of the 
antennae at the ith time instant can be defined as Equation (13). 

xi
l = xi + dib  

xi
r = xi − dib (13) 

Fig. 3. Correlation matrix of input variables for (a) FS dataset and (b) Re-
sistivity dataset. 

Fig. 4. A support vector regression machine [57].  
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where b is a random vector demonstrating the random direction of the 
beetle. The vector b can be written as Equation (14) by introducing the 
rand and k, illustrating a random function and the dimension, 
respectively. 

b=
rand(k, 1)
rand(k, 1)

(14) 

Equation (15) shows the position vector of the beetle where δ means 
the step size and f(x) represents the fitness function. Besides, the 
antennae length and the step size can be updated as follows. The pseu-
docode of BAS is depicted in Fig. 5. 

xi = xi− 1 + δibsign
(
f
(
xi

r

)
− f
(
xi

l

))
(15)  

di = 0.95di− 1 + 0.01 (16)  

δi = 0.95δi− 1 (17)  

3.3. Hyperparameter tuning 

3.3.1. Cross fold validation 
For the SVR model, two basic hyperparameters need to be adjusted, 

which are Gaussian kernel parameter γ, and namely penalty coefficient 
c. In order to overcome the overfitting problems, a 10-fold CV is applied. 
The dataset of FS is randomly split into 30% for the test set and 70% for 
the training set, as is the resistivity dataset [60]. Afterward, the training 
set is grouped into 10 commonly exclusive folds presented in Fig. 6 [38]. 
The nine subsets are used to train the SVR model with hyperparameters 
tuned by the BAS algorithm after 50 iterations. The remaining one is 
served as the validation fold to check the reliability of the trained model. 
The root means square error (RSME) is acquired after the completion of 
validation. The cross-fold validation is repeated 10 times. Finally, the 
model having the minimum RSME and optimal hyperparameters will be 
applied to forecast the resistivity and FS of ECCC in this study. 

3.3.2. Performance evaluation 
In this study, four accompanying evaluating indicators aim to eval-

uate the precision of the SVR model: correlation coefficient (R), mean 
absolute percentage error (MAPE), mean absolute error (MAE), and root 
mean square error (RMSE). These indicators are calculated as follows 

[38]: 

R=

∑n
i=1

(
y*

i − y*
)
(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(y*
i − y*)

2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(y*

i − y)2
√ (18)  

MAPE=
1
n

∑n

i=1

⃒
⃒
⃒
⃒
y*

i − yi

yi

⃒
⃒
⃒
⃒ (19)  

MAE=
1
n
∑n

i=1

⃒
⃒y*

i − yi
⃒
⃒ (20)  

RSME =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(y*

i − yi)
2

√

(21)  

where n is the n groups of data samples; y*
i and yi are the predicted and 

actual results; y* and y illustrate the mean values of the predicted and 
actual results. 

3.4. Multi-objective optimisation 

3.4.1. Objective function establishment 
The BAS-SVR model is adopted as the objective function for re-

sistivity and FS. The third objective function (cost) is computed by 
polynomials as follows: 

Cost
(
$
/

m3)=CcQc +CwQw +CgpQgp +CssQss +CggbsQggbs +CfaQfa + CcaQca

(22) 

In Equation (22), Qc, Qw, Qgp, Qss, Qfa, Qca and Qggbs mean the quantity 
(kg/m3) of cement, water, GP, SS, GGBS, and fine and coarse aggregate, 
respectively. Besides, C means the unit price (kg/m3) of each raw ma-
terial of ECCC, which is summarised in Table 4. 

3.4.2. Constraints 
The MOO problem requires setting up the following constraints 

including range constraints of materials, concrete volume constraints, 
and ratio constraints.  

• Range constraints 

Fig. 5. The pseudocode for BAS.  
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The data range can be set according to the datasets of FS and re-
sistivity for ECCC, as shown in Equation (23): 

dimin ≤ di ≤ dimax (23)  

where dimin and dimax represent the lowest and highest value of the ith 
variable.  

• Volume constraints 

The amount of the solid should amount to one cubic meter as follow: 

Vm =
Qc

Uc
+

Qw

Uw
+

Qgp

Ugp
+

Qss

Uss
+

Qggbs

Uggbs
+

Qfa

Ufa
+

Qca

Uca
(24)  

where Uc, Uw, Ugp, Uss, Uggbs, Ufa and Uca are the unit weight of OPC, 
water, GP, SS, GGBS, fine aggregate, and coarse aggregate, individually.  

• Ratio constraints 

To seek ECCC mixture optimisation, the ratio constraints need to be 
determined to establish the correlation between different raw materials. 
Table 5 lists the input factors which depend on the datasets framed. 

3.4.3. Construction of MOBAS-SVR 
The establishment of MOBAS-SVR is based on the objective functions 

of FS, resistivity, and cost by applying the weighted sum method. Each 
objective (fk) is combined into a single composite objective function (F), 
shown in Equation (25). 

F =
∑k

k=1
wkfk ,

∑k

k=1
wk = 1 (25)  

where weights are calculated as wk =
pk
K ; k is the uniform distribution 

number and pk (ranging from 0 to 1) is the random number developed 
from a uniform distribution. 

Therefore, the above function can be defined as follows in this 
research: 

F =w1 ⋅ FS(28 days)+w2 ⋅ Resitivity(28 days)+w3⋅cost (26)  

∑3

k=1
wk = 1 (27) 

Since multiple goals in the MOO problem need to be optimised, the 
Pareto optimal front is proposed to provide a non-dominated solution, as 
described as follows [61,62]. It implies the condition that other objec-
tive functions fail to be improved without worsening the other functions 
[61,63]: 

If A represents the group of feasible solutions and x* ∈ A is one of the 
Pareto optimal solutions, there is no existence of x ∈ A satisfy that 

fk(x)≤ fk(x*)fork = 1, 2, 3,…, tand (28)  

fk(x) < fk(x*) foratleastonek (29) 

If f(x*) is larger than f(x) for every x, Pareto optimal solution x* will 
be achieved. The combination of Pareto optimal solutions constitutes 
the Pareto front, which depicts in Fig. 7, representing the collection of 
non-dominated solutions. The BAS can be developed to MOBAS-SVR 
through the weight sum method to deal with the Pareto front of MOO 
problems where the pseudocode is summed up in Fig. 8. 

3.4.4. Decision-making for multi-objective optimisation designs 
The MOO problems can be solved by proposing the Pareto front as 

demonstrated above, however, the final optimal mixture proportion fails 
to obtain for decision-making. Thereby, a multi-criteria decision strat-
egy is proposed, which is the technique for order preference by simi-
larity to an ideal solution (TOPSIS). According to the Pareto front which 
determines the positive and negative ideal points, TOPSIS can select a 
solution that is closest to the former and meantime farthest from the 
latter. The ideal point (positive) is the solution in which the value of the 
composite function is highest and the ideal point (negative) corresponds 
to the worst object function value. Finally, a solution with the highest Ci 
is considered as the best one where the formulations depicted as follows: 

Fig. 6. 10-fold cross validation.  

Table 4 
The unit cost of each variable of ECCC.  

Variables Notation Unit price ($/kg) Unit weight (kg/m3) 

OPC Cc  0.059 3050 
Water Cw  0.0005 1000 
GP Cgp  0.71 1800 
SS Css  0.14 3670 
GGBS Cggbs  0.05 2840 
Fine aggregate Cfa  0.009 2600 
Coarse aggregate Cca  0.0065 2700  

Table 5 
The constraints of ECCC input variables.  

Variables Expressions Lower bound Upper bound 

OPC C (kg/m3)  270 360 
GP ratio Cgp/(Cc + Css + Cggbs) 0.02 0.06 
SS ratio Css/(Cc + Css + Cggbs) 0.1 0.2 
GGBS ratio Cggbs/(Cc + Css + Cggbs) 0.1 0.2 
SS to GGBS ratio Css/Cggbs  0.5 2  
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di+ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
Fij − Fideal

j

)2
√
√
√
√ (30)  

di− =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

j=1

(
Fij − Fnon− ideal

j

)2
√
√
√
√ (31)  

Ci =
di−

di+ + di−
(32)  

where di+ and di− are the positive and negative solutions; n and i are the 
numbers of objectives and the ith Pareto point; Fideal

j represents the ideal 
value of the jth objective and Fnon− ideal

j is the non-ideal value. 

3.5. Variable importance measure 

To explore the relationship between inputs and outputs, a method 
based on sensitivity analysis (SA) was applied. It can measure the impact 
on the proposed SVR output when the input value changes within its 
value range [65,66]. The input and output variables need to be designed 
at first. Then, each input variable is individually evaluated with all the 

Fig. 7. Model of a Pareto line with feasible points [64].  

Fig. 8. The pseudocode of MOBAS-SVR.  
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other variables unchanged. The SA includes global or local analysis, but 
local sensitivity cannot be used for locating model uncertainties. Global 
sensitivity analysis (GSA) can assess all input variables to be modified 
simultaneously. Therefore, GAS was utilised for a ranking of importance 
among multiple variables in this study. Finally, the modelling of GSA 
provides the importance of variables through bar charts, ranging from 
0 to 100% [67]. The following equations show a gradient metric to es-
timate the resulting change of the output and the relative importance 
formulation [67,68]. 

gε =
∑L

j=2

⃒
⃒ŷε,j − ŷε,j− 1

⃒
⃒

L − 1
(33)  

Rε = gε

/
∑I

i=1
gi (34)  

where ε is the input variable that needs to be analysed; ŷε,j stands for the 
sensitivity response indicator for xε,j; Rε is the relative importance of the 
variable. 

4. Results and discussion 

4.1. Results of laboratory tests 

4.1.1. Results of mechanical strength test 
Figs. 9 and 10 present the effect of the content of GP, GGBS, and SS 

on the UCS and FS of ECCC, respectively, when the curing day is 28. The 
GP adversely influenced the mechanical strength that both UCS and FS 
decreased with the increase of the GP ratio. This is because the surface of 
the GP is relatively smooth, which reduces the binding fraction of the 
interface transition zone (ITZ) of the aggregates [69–71]. When the 
GGBS and SS were both 20%, the UCS of ECCC containing GP increased 
from 2% to 4% and 6% decreased by 20.65% and 32.34%, respectively. 
Similarly, the FS of ECCC decreased by 8.57% and 22.86%, respectively 
in this case. Besides, both the UCS and FS significantly diminished when 
the GP ratio increased from 4% to 6% especially when the contents of 
GGBS and SS were low, indicating a 4% GP ratio as the threshold. 

According to the UCS test results, the increasing contents of GGBS 
and SS generally adversely influenced the mechanical strength of ECCC. 
Similarly, the FS decreased with the increase of the content of SS and 
GGBS. The possible reason is that excessive slag can destroy the uniform 
molecule size distribution in the ECCC, and the insufficient binder fails 
to fill the gap between aggregates. As a result, the binding fraction scale 

decreases, and so does the mechanical strength [72–74]. However, the 
effect of slags on both UCS and FS was positive on condition their con-
tents were not excessive. Compared with the control sample (UCS =
49.5 MPa, FS = 3.9 MPa), the specimen containing 2% GP, 10% GGBS, 
and 10% SS possessed higher UCS and FS strength of 4 MPa and 50.8 
MPa, which were increased by 2.63% and 2.56%, respectively. This UCS 
and FS are supposed to be higher than those of the sample with a single 
2% GP, indicating the positive influence of GGBS and SS on ECCC’s 
mechanical strength. This can be attributed to the crystal structure of the 
waste slag, enhancing the interfacial strength of ITZ and improving the 
microstructural friction. In addition, SS had a less negative effect than 
GGBS from the FS test results. For example, when the GP was 4%, the FS 
of ECCC containing 10% SS and 20% GGBS was 3.1 MPa at 28 days, 
which was lower than the sample containing 15% SS and 15% GGBS 
(3.4 MPa), and lower than the sample containing 10% GGBS and 20% SS 
(3.5 MPa). The is because the SS surface has massive angular square 
crystals approximately 500 nm to 1 μm, which can fundamentally 
expand the binding strength of ITZ and improve the mechanical prop-
erties [75,76]. 

4.1.2. Results of electrical test 
The 14-day and 28-day electrical resistivity of ECCC containing 

different content of slag solids and GP are depicted in Fig. 11. Compared 
to the control sample of which the resistivity showed 2.32 × 106 Ω⋅cm 
for 14 days and 4.21 × 106 Ω⋅cm for 28 days, the ECCC composites 
demonstrated superior conductivity with much lower resistivity values. 
The conductivity of ECCC was very sensitive to GP that the resistivity 
experienced a significant downward trend with the increase of GP 
content. For instance, when the GP proportion increased from 2% to 6%, 
the electrical resistivity of ECCC containing 10% SS and 10% GGBS at 14 
and 28 curing days decreased by 90.85% and 86.53%, respectively. 
Furthermore, no crucial change in electrical resistivity with different SS 
and GGBS amounts under the situation of 2% GP addition. Generally, the 
resistivity decreased with the increase of both SS and GGBS ratio, but SS 
was more influential than GGBS. For the sample having 4% GP and 20% 
GGBS, the 28-day electrical resistivity of ECCC was reduced by 47.39% 
from 9.60 × 103 Ω⋅cm to 5.05 × 103 Ω⋅cm when GGBS increased from 
10% to 20%. And for the sample containing 4% GP and 20% SS, when 
the ratio of SS changed from 10% to 20%, the resistivity was reduced by 
89.90% from 5.00× 104Ω⋅cm to 5.05 × 103 Ω⋅cm. As a result, SS 
remarkably enhanced the electrical conductivity and simultaneously 
compensated the strength loss due to the GP lubrication. Besides, the 
electrical conductivity of early-age ECCC samples was lower than that of Fig. 9. The UCS of ECCC composites at 28 curing days.  

Fig. 10. The FS of ECCC composites at 28 curing days.  
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fully cured concrete, illustrating that the water particles positively affect 
the conductivity of ECCC. In conclusion, the mechanical and conductive 
behaviours of SS and GGBS have been exhibited, although samples 
containing GP without SS and GGBS were not prepared. To predict the 
reliable properties of ECCC, the machine learning method can be used as 
demonstrated in the next section. 

4.2. Modelling results 

4.2.1. Results of hyperparameter tuning 
As mentioned above, the hyperparameters (γ and c) need to be 

adjusted by utilising a 10-fold CV and BAS algorithm. The fold corre-
sponding to the minimum RMSE is shown in Fig. 12. The 4th and 2sec 

fold showed the minimum RSME in the FS dataset and resistivity dataset, 
respectively. Fig. 13 depicts the iteration situation on the 4th fold of the 
FS dataset and the 2sec fold for the resistivity dataset. The RMSE curve 
needed 9 iterations to converge to 0.028 MPa for the FS set, and 12 it-
erations to reach 1.25 × 104 Ω⋅cm for the resistivity set, illustrating the 
efficiency of tuning the hyperparameters by BAS. Ultimately, the 
hyperparameters c and γ arrived at 0.11 and 187.8 for FS, and 2.63 and 
1152423 for resistivity set, respectively. 

4.2.2. Performance of BAS-SVR 
Fig. 14 shows the prediction situation of FS and resistivity by 

employing the optimal SVR model. Most of the points are found to be 

close to the perfect fitting curve (the black solid diagonal line), indi-
cating the robustness of the model prediction. The correlation co-
efficients were up to 0.9906 and 0.9812 in the training and test sets 
respectively for the FS dataset, showing the high predictive ability of the 
BAS-SVR model. Similarly, the high R value (0.9806) appeared on the 
resistivity dataset, although one outlier existed. This illustrated the 
sufficient accuracy of BAS-SVR models in predicting the values of both 
FS and resistivity of ECCC. Table 6 lists the values of the evaluation 
index consisting of R, MAE, MAPE, and RMSE in FS and resistivity as-
pects. The values of MAE, MAPE, and RMSE were low, further support 
the low error of BAS-SVR models. In addition, the values of RMSE or R 
on the training set and test set were both close, which means that the 
overfitting issue did not happen. Therefore, the model is feasible to 
predict the properties of ECCC. 

4.2.3. ECCC mixture optimisation 
Solutions that minimised the objective function were ultimately ac-

quired by using MOBAS-SVR. The cost and 28-day electrical resistivity 
were minimised simultaneously, while the 28-day FS of ECCC was 
maximised. As presented in Fig. 15, the Pareto front of the tri-objective 
(FS, resistivity, and cost) optimisation design has been generated. The 

Fig. 11. The electrical resistivity of ECCC composites at (a) 14 days and (b) 
28 days. 

Fig. 12. 10-fold CV in tuning hyperparameters on the (a) FS dataset and (b) 
resistivity dataset. 
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Pareto front was composed of 100 non-dominated points based on the 
database and constraints. These points were widely distributed in the 
three-dimensional space with reasonable ranges of FS, resistivity, and 
cost. It illustrates the effectiveness and the performance of the gener-
alisation of the MOBAS-SVR model. 

To increase the conductivity of ECCC, the cost needs to be increased 
to lower the resistivity. However, the corresponding FS was inevitable to 
be reduced. Therefore, the final selection is dependent on the decision- 
maker to judge the dominant property of ECCC and balance the property 
and budget. Point A, B, C, and D are four selected Pareto solutions, 
among which point B, C, and D correspond to the single objective 
optimisation design. In point B, the FS of the ECCC reached the highest 
with FS equaled 3.6 MPa. And in points C and D, the minimum electrical 
resistivity and cost were found respectively, which means the single 
optimised resistivity and cost of ECCC in the tri-objective optimisation 
problem have been achieved. Besides, with the application of the TOP-
SIS method, point A was determined as the most appropriate solution. It 
has the highest TOPSIS score of 1 with 3.50 MPa FS, 2.69× 105 Ω⋅cm 
resistivity, and 49.98 $/m3 cost. The corresponding mixture proportions 
of solutions A, B, C, and D are listed in Table 7. Generally, the decision- 
maker should balance the budget and the properties of ECCC that need 
to be attained, otherwise, the ideal solution with the highest TOPSIS is 

preferable. 

4.2.4. Variable importance of using BAS 
The sensitivity study outcomes present the estimation impacts of 

measurement variables on FS and resistivity, as illustrated in Fig. 16. 
The curing time had the most significant influence on the FS dataset with 
the highest influence ratio of 45.29%. Within the three conductive 
materials (GP, SS, and GGBS), GP showed the highest importance ratio 
of 28.37%, followed by GGBS (13.99%). The importance ratio of the SS 
was negligible and found to be 0.1%. This result is in agreement with the 
afore-mentioned experimental results, illustrating the accuracy of the 
BAS-SVR model in evaluating the variable importance. 

For the ranking of input variables for electrical resistivity of ECCC, 
GP possessed the highest significant ratio of 48.15%, followed by SS 
(21.23%) and OPC (19.76). Besides, it was observed that GGBS had the 
least influence ratio of 9.42% on the resistivity of ECCC. The outcome is 
in accordance with the experimental result that GP diminished the re-
sistivity of ECCC more significantly than SS and GGBS. Therefore, GP 
and SS are more appropriate than GGBS to act as the conductive 

Fig. 13. Normalised RMSE versus iteration in the optimal fold for (a) FS dataset 
and (b) resistivity dataset. 

Fig. 14. Actual versus predicted values for (a) FS and (b) resistivity.  

Table 6 
Evaluation of BAS-SVR on FS and resistivity test sets.  

Test category Evaluation index 

RMSE R MAE MAPE 

FS 0.130 ​ MPa  0.981 0.017 ​ MPa  0.042 
Resistivity 3.16 × 104 Ω⋅cm  0.981 2.32 × 104 Ω⋅cm  2.476  
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materials of ECCC. Furthermore, the importance of curing time on re-
sistivity had a negligible importance ratio of 1.44%, illustrating the less 
importance of the curing time for electrical conductivity. 

5. Conclusion 

In this study, UCS, FS, and electrical resistivity tests of ECCC were 
conducted to investigate the effect of three conductive materials, GP, SS, 
and GGBS. Based on the experimental datasets, a BAS-SVR based multi- 
objective optimisation model was proposed to seek the optimal mixture 
design for cost, FS, and resistivity of ECCC. Besides, the variable 
importance analysis was carried out and the outcome was consistent 
with the experimental findings. The following results were drawn from 
this study:  

1. The GP significantly reduced the UCS and FS of ECCC, although the 
GP content was only 2%, mainly due to the lubrication effect. When 
the slag solids (SS + BBGS) ratio was low at 20%, the UCS and FS of 
ECCC slightly increased by 2.63% and 2.56%, respectively, but 
decreased with the increase of the slag. Additionally, SS had a less 
negative effect than GGBS on FS.  

2. The GP, SS, and GGBS can improve the conductivity of ECCC. The 
enhancement effect of GP was the highest that the resistivity was 
decreased by 80%–90% when the GP content was increased from 2% 
to 6%. Besides, SS had a more significant impact on electrical con-
ductivity than GGBS.  

3. The BAS algorithm was competent in adjusting hyperparameters of 
the SVR model with minimum RMSE obtained at the 4th and 2sec fold 
on the FS and resistivity dataset, respectively. The R values for both 
test sets were 0.981, indicating their high accuracy and effectiveness.  

4. The MOBAS-SVR successfully generated the Pareto front for tri- 
objective (cost, FS, and resistivity) problem with nonlinear con-
straints. It depends on the decision-maker to select the multi- 
objective optimisation solutions. Otherwise, the design with the 
highest TOPSIS (point A in Fig. 15) is preferable and more appro-
priate, with FS equals 3.50 MPa, resistivity equals 2.69 × 105 Ω⋅cm, 
and cost equals 49.98 $/m3.  

5. The variable importance ranking shows that the most significant 
variables were curing time and GP, affecting respectively FS and 
resistivity, which is consistent with the experimental findings. 

In future work, the generalisation property of the MOO model can be 
improved by collecting a comprehensive information database 
comprising more conductive materials and long-term mechanical and 
conductive properties. Furthermore, updated ML should be consolidated 
and compared to improve the effectiveness, accuracy, and efficiency. 
The MOO model can be used to design electrically conductive alkali- 
activated materials with various carbon- or metal-based admixtures. It 
can also be implemented into practice to improve the design of concrete 
especially during the early stage of construction. 
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Appendix A  

ID OPC 
(g) 

GP 
(g) 

SS 
(g) 

GGBS 
(g 

CA (g) FA (g) W (g) FS (MPa) UCS (MPa) Resistivity (Ω⋅cm) 

7d 14d 28d 7d 14d 28d 7d 14d 21d 28d 

1 450 0 0.0 0.0 1302.6 884.6 157.5 3 3.5 3.9 38.1 44.6 49.5 1933751 2315122 2572178 4205411 
2 360 9 45.0 45.0 1302.6 884.6 157.5 3 3.6 4 38.1 45.7 50.8 304972 447514 533701 601659 
3 360 18 45.0 45.0 1302.6 884.6 157.5 2.7 3.3 3.8 35 43.5 49.1 76807 81325 159036 151125 
4 360 27 45.0 45.0 1302.6 884.6 157.5 2.3 2.8 3 26.5 36 42.3 40000 40941 79058 81032 
5 337.5 9 45.0 67.5 1302.6 884.6 157.5 2.7 3.36 3.7    294084.8 452165.6 539022.6 573161.8 
6 337.5 18 45.0 67.5 1302.6 884.6 157.5 2.5 3.14 3.5    56726.2 66868.2 115238 110666.2 
7 337.5 27 45.0 67.5 1302.6 884.6 157.5 2.1 2.56 2.9    27363.6 32448.6 55495.6 58698.8 
8 315 9 45.0 90.0 1302.6 884.6 157.5 2.3 3 3.3    277754 459143 547005 530416 
9 315 18 45.0 90.0 1302.6 884.6 157.5 2.2 2.9 3.1    26605 45183 49541 49978 
10 315 27 45.0 90.0 1302.6 884.6 157.5 1.8 2.2 2.9    8409 19710 20152 25199 
11 337.5 9 67.5 45.0 1302.6 884.6 157.5 2.7 3.46 3.9    200291 263572.4 418918.8 490692.4 
12 337.5 18 67.5 45.0 1302.6 884.6 157.5 2.6 3.18 3.7    35512.4 51671.4 64986.2 76730.2 
13 337.5 27 67.5 45.0 1302.6 884.6 157.5 2.4 2.84 3.1    21985 35320.4 37412.2 41496.4 
14 315 9 67.5 67.5 1302.6 884.6 157.5 2.4 3.1 3.5 28.5 35.5 40.5 121673 177947 250950 401248 
15 315 18 67.5 67.5 1302.6 884.6 157.5 2.3 2.95 3.4 26.9 33 37.9 6701 11082 15893 24985 
16 315 27 67.5 67.5 1302.6 884.6 157.5 2.1 2.6 3 18.1 25.8 35.2 4963 5948 6277 9559 
17 292.5 9 67.5 90.0 1302.6 884.6 157.5 2.2 2.82 3.4    165252.8 257569.4 319318.8 349181.8 
18 292.5 18 67.5 90.0 1302.6 884.6 157.5 2 2.72 3.2    11702.2 19820.4 22877 23021.2 
19 292.5 27 67.5 90.0 1302.6 884.6 157.5 1.9 2.26 2.8    3599.4 8169.6 8503.6 10571.6 
20 315 9 90.0 45.0 1302.6 884.6 157.5 2.5 3.2 3.7    157895 196382 191447 310131 
21 315 18 90.0 45.0 1302.6 884.6 157.5 2.4 3 3.5    4482 6436 6413 9599 
22 315 27 90.0 45.0 1302.6 884.6 157.5 2.3 2.8 3.2    1362 1911.2 1888 3025 
23 292.5 9 90.0 67.5 1302.6 884.6 157.5 2.4 3 3.5    130837.8 167104 181879.4 277422.2 
24 292.5 18 90.0 67.5 1302.6 884.6 157.5 2.2 2.8 3.4    3396 5026.4 5888.2 7779.4 
25 292.5 27 90.0 67.5 1302.6 884.6 157.5 2.1 2.6 2.9    974.4 1337.12 1428 2143 
26 270 9 90.0 90.0 1302.6 884.6 157.5 2.1 2.7 3.5 26.5 34.6 40.2 90252 123187 167528 228359 
27 270 18 90.0 90.0 1302.6 884.6 157.5 2 2.6 3.2 20.5 29.1 31.9 1767 2912 5101 5050 
28 270 27 90.0 90.0 1302.6 884.6 157.5 1.9 2.3 2.7 11.4 16.9 27.2 393 476 738 820  
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